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Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis,
required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural
systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed
description of how to use Sierra/SD , we refer the reader to Sierra/SD, User’s Notes.

Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these
materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation.
We try to be far more complete in those areas.

The theory manual was developed from several sources including general notes, a programmer notes
manual, the user’s notes and of course the material in the open literature.
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UNCLASSIFIED- UNLIMITED RELEASE 13

1 Solutions

One thing which makes Sierra/SD somewhat unique among the many mechanics codes developed at Sandia
National Labs is that Sierra/SD combines a variety of different solution procedures. These range from
modal superposition based solutions to nonlinear transient. As described in the User’s Notes , these solutions
can be combined (or chained) in solution cases. This section of the manual describes the theory behind these
individual solutions. For details about particular finite elements, see section 3.

1.1 Linear transient analysis

For linear and nonlinear transient dynamics, the time integrator in Sierra/SD is either the Newmark-Beta
method or the generalized alpha method.1

Linear structural analysis finite element discretization of the momentum equation, with external load
Fext , leads to the differential equation

Ma(t)+Ĉv(t)+Kd(t) = Fext(t), v = ḋ, a = d̈,

where damping matrix Ĉ = C+αM +βK is the is the sum of the standard damping matrix C (say from a
dashpot) and proportional damping terms. In the generalized alpha method the state at the n+1st time step
is determined from

M [(1−αm)an+1 +αman] + Ĉ [(1−α f )vn+1 +α f vn]+

K [(1−α f )dn+1 +α f dn] = (1−α f )Fext(tn+1)+α f Fext(tn)

(1.1)

The parameters α f and αm are constrained to achieve second order accuracy and maintain unconditional
stability,

αm < α f ≤
1
2

γn =
1
2
−αm +α f

βn ≥
1
4
+

1
2
(α f −αm)

(1.2)

By specifying the input parameter 0≤ ρ≤ 1, the user selects parameters satisfying these constraints

α f = ρ/(1+ρ)

αm = (2ρ−1)/(1+ρ)

βn = (1−αm +α f ) · (1−αm +α f )/4

γn = 1/2−αm +α f

1 The Hilbert-Hughes-Taylor (HHT) method is a subset of the generalized alpha method.
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The maximum damping case isρ = 0; we have that α f = 0 and αm = −1. The undamped case is ρ = 1, at
which α f = αm = 1

2 , which yields βn =
1
4 , and γn =

1
2 just as in the undamped Newmark-beta method. For

later use, we also define
Fext

n+1+α f
= (1−α f )Fext(tn+1)+α f Fext(tn) (1.3)

There are two options for evaluating Fext
n+1+α f

. More will be given on this in section 1.2.

Sierra/SD uses the undamped Newmark-beta method if no damping parameter is specified in the input
file,

α f = αm = 0, β =
1
4
,γ =

1
2
, Man+1 +Ĉvn+1 +Kdn+1 = Fext(tn+1).

In terms of the Newmark parameters βn and γn, the time integration scheme is

dn+1 = dn +∆tvn +
∆t2

2
[(1−2βn)an +2βnan+1]

vn+1 = vn +∆t [(1− γn)an + γnan+1]

(1.4)

In order to have a displacement-based method, we solve these equations for the acceleration and velocity
in terms of displacement, which yields

an+1 =
1

βn∆t2 [dn+1−dn− vn∆t]− 1−2βn

2βn
an

vn+1 = vn +∆t [(1− γn)an + γnan+1]

= vn +∆t
[
(1− γn)an +

γn

βn∆t2 [dn+1−dn− vn∆t]− γn
1−2βn

2βn
an

]
(1.5)

Substitute equation (1.5) into equation (1.1) and collect terms to obtain for the undamped Newmark beta
method [

M
1

βn∆t2 +Ĉ
γn

βn∆t
+K

]
dn+1 = Fext

n+1+

−Ĉ
[

vn +∆t(1− γn)an−
γn

βn∆t
[dn +∆tvn]−

γn∆t(1−2βn)

2βn
an

]
+M

[
1

βn∆t2 [dn + vn∆t]+
1−2βn

2βn
an

]
or for the generalized alpha method,

[
M
(1−αm)

βn∆t2 +Ĉ(1−α f )
γn

βn∆t
+K(1−α f )

]
dn+1 =

Fext
n+1+α f

−Kα f dn
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−Ĉ
[

α f vn +(1−α f )

[
vn +∆t(1− γn)an +

γn

βn∆t
[−dn−∆tvn]−

γn∆t(1−2βn)

2βn
an

]]

+M
[
−αman +

1−αm

βn∆t2 [dn + vn∆t]+ (1−αm)
1−2βn

2βn
an

]
(1.6)

There are three matrix-vector products on the right hand side of this equation, one for each of the system
matrices M, K, and C.

1.2 Prescribed Accelerations

Prescribed accelerations can be applied in Sierra/SD to nodesets or sidesets, as described in the users manual.
Here we give a brief description of the theory behind the implementation.

To simplify matters, we consider the case when the acceleration of a single degree of freedom is pre-
scribed as ao f (t), where ao is the amplitude, and f (t) is the function describing the time dependence. The
extension to multiply prescribed degrees of freedom is simply a matter of an external loop.

Given f (t), we compute two numerical integrals as follows.

a(t) = ao f (t)

v(t) = v0 +
∫ t

0
a(t) = v0 +

∫ t

0
ao f (t)dt = v0 +ao(i f (t))

d(t) = d0 +
∫ t

0
v(t)dt = d0 + v0t +

∫ t

0

∫ t

0
ao f (t)dt = d0 + v0t +ao(ii f (t))

(1.7)

where we have defined i f (t) and ii f (t) to denote the first and second integrals of the function f (t), and d0
and v0 denote the initial displacement and velocity. i f (t) and ii f (t) are computed numerically in Sierra/SD.

Given these functions, we can statically condense the prescribed degrees of freedom, and bring the
resulting terms to the right hand side. First, we define mi to be the column of the mass matrix associated
with the prescribed dof, and ci and ki are similarly defined for the damping and stiffness matrices. We first
write the Gset version of equation 1.1. We put subscripts of g on the system matrices and right hand side to
denote that they do not yet have prescribed BCs condensed out (hence are Gset).

Mg [(1−αm)an+1 +αman] + Ĉg [(1−α f )vn+1 +α f vn]+

Kg [(1−α f )dn+1 +α f dn] = (1−α f )Fext
g (tn+1)+α f Fext

g (tn)

(1.8)

Next, we condense out the prescribed degrees of freedom and move the contributions to the right hand side.
We note that degrees of freedom that are fixed do not contribute to the right hand side. After this process,
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we remove the subscripts from the system matrices, since they are now in Aset form. We also condense the
right hand side terms, so that everything is Aset.

M [(1−αm)an+1 +αman] + Ĉ [(1−α f )vn+1 +α f vn]+

K [(1−α f )dn+1 +α f dn]

= (1−α f )Fext(tn+1)+α f Fext(tn)

− (1−α f )ao [ f (tn+1)mi + i f (tn+1)ci + ii f (tn+1)ki]

− α f ao [ f (tn)mi + i f (tn)ci + ii f (tn)ki]

(1.9)

This shows that prescribed accelerations result in a contribution to the right hand side that consists of prod-
ucts of the time function f (t) with the column from the mass matrix corresponding to the prescribed dof,
and products of the first and second integrals of f (t) with the corresponding columns from the damping
and stiffness matrices. For statics problems, this procedure reduces to only a contribution from the stiffness
matrix, and this is also included in Sierra/SD.

1.3 Nonlinear transient analysis

This section follows closely the nonlinear transient procedure given by Belytschko et al,1 with the modifi-
cation of using the generalized alpha integrator rather than the Newmark beta approach. In the case of a
nonlinear transient analysis, the equation of motion is

M [(1−αm)an+1 +αman] + Ĉ [(1−α f )vn+1 +α f vn]+

(1−α f )F int
n+1 +α f F int

n = (1−α f )Fext(dn+1)+α f Fext(dn)

(1.10)

where F int
n+1 and F int

n are the internal forces at the current and previous time steps, respectively. Note that we
have written the external loads as functions of displacement, since in the most general case they could be
follower loads.

Before proceeding, we note that there are two possible approaches for implementing the generalized
alpha method, and in equation 1.10 we have taken one of these approaches. The difference lies in the
treatment of the internal and external forces. The first approach is to evaluate them as follows

F int
n+1+α f

= F int((1−α f )dn+1 +α f dn)

Fext
n+1+α f

= Fext((1−α f )dn+1 +α f dn)

(1.11)

and the second is to evaluate two separate terms

F int
n+1+α f

= (1−α f )F int(dn+1)+α f F int(dn)

Fext
n+1+α f

= (1−α f )Fext(dn+1)+α f Fext(dn)

(1.12)
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When both Fext and F int are linear functions, the two approaches are identical. For nonlinear problems, both
Fext and F int could be nonlinear functions, and thus the two procedures are different. In the limit of very
small time steps, these nonlinear functions effectively linearize and the two approaches again become the
same. Thus the limiting behavior of the two approaches is the same.

We note that in most cases, the external load Fext is treated as a piece-wise linear function of time, and
in those cases the two approaches yield the same result for the external load, though a couple of exceptions
are worth mentioning. First, if two consecutive time steps lie within two different linear segments, then the
two approaches above yield different loads. Second, although they are seldom used, polynomial and loglog
interpolation functions are available in Sierra/SD in addition to the commonly used linear interpolation, and
in those cases different load vectors result from the above procedures. For problems with very large time
steps and involving polynomial interpolation, different results are to be expected.

In Sierra/SD we have chosen the second option, which evaluates both the internal force and external
force at both times of interest, and forms a linear combination of the two. Comparisons have shown little
difference in the results on simple test problems.

Using the tangent stiffness method, we replace F int
n+1 as

F int
n+1 = F int

n +Kt∆d (1.13)

where Kt is the tangent stiffness matrix, defined as Kt = ∂F int/∂u, and ∆d = dn+1 − dn. Also, we use
equations 1.5, which are the same as in the linear case.

First, we substitute equations 1.5 and 1.13 into equation 1.10. This results in the following equations,
which are almost identical to the ones from the linear case[

M
(1−αm)

βn∆t2 +Ĉ(1−α f )
γn

βn∆t
+Kt(1−α f )

]
dn+1 =

Fext
n+1+α f

−α f F int
n − (1−α f )

[
F int

n −Ktdn
]

−Ĉ
[

α f vn +(1−α f )

[
vn +∆t(1− γn)an +

γn

βn∆t
[−dn−∆tvn]−

γn∆t(1−2βn)

2βn
an

]]

+M
[
−αman +

1−αm

βn∆t2 [dn + vn∆t]+ (1−αm)
1−2βn

2βn
an

]

Finally, we want the unknown to be ∆d = dn+1− d̂, where d̂ is the current iterate of displacement. To
accomplish this, we subtract the appropriate terms from both sides, which yields, after collecting terms[

M
(1−αm)

βn∆t2 +Ĉ(1−α f )
γn

βn∆t
+Kt(1−α f )

]
∆d =

Fext
n+1+α f

− (1−α f )F̂ int −α f F int
n −C [(1−α f )v̂+α f vn]

−M [(1−αm)â+αman] (1.14)
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where again hats denote current iterates of acceleration, velocity, etc. Note that we have re-defined ∆d =
dn+1− d̂, which is different than the previous definition that was given. Also, we note that F̂ int = F int

n +
Kt(d̂−dn).

Upon using the Newmark beta time integrator (γn =
1
2 , βn =

1
4 , α f = αm = 0, equation 1.14 reduces to[

M
4

∆t2 +Ĉ
2
∆t

+Kt

]
∆d = Fext

n+1− F̂ int −Cv̂−Mâ (1.15)

which is the same equation given by Belytschko et al.1

We note that equation 1.14 can be written as

A∆d = res (1.16)

where A is the dynamic matrix, ∆d is the change in displacement from the previous Newton iteration to the
current Newton iteration, and res is the residual, i.e. the amount by which the equations of motion (equation
1.10) are not satisfied by the current iterate. The residual can be written from the previous equations as

res = Fext
n+1− F̂ int −Cv̂−Mâ (1.17)

1.3.1 Nonlinear Transient Analysis with Constraints

In the previous section, the assumption was made that there were no multi-point constraint equations. These
extra equations introduce Lagrange multipliers that need to be included in the nonlinear equations. In this
section, we will describe how to include constraint equations into the nonlinear solution method based on
Newton’s method.

Equation 1.16 is correct if there are no constraint equations in the problem. When constraint equations
are involved, we will show that this generalizes to the following[

A GT

G 0

][
∆d
∆λ

]
=

[
res
0

]
(1.18)

where now, the residual is defined with an additional term due to the constraints

res = Fext
n+1− F̂ int −Cv̂−Mâ−GT

λ̂ (1.19)

where G is the matrix representation of the constraint equations, λ̂ is the current Newton iterate of the
Lagrange multipliers, and GT λ̂ represents a force due to constraints. Note that when the problem has no
constraint equations, equations 1.18 and 1.19 reduce to equations 1.16 and 1.17.

We can arrive at equations 1.18 through some simple arguments similar to the unconstrained case. The
second equation

G∆d = Gdn+1−Gd̂ = 0 (1.20)

is a simple argument that the linear solver always returns solutions that satisfy Gd = 0, and thus the differ-
ence Gdn+1−Gd̂ must also be zero.

The first equation can be deduced simply by including an additional constraint force term into the resid-
ual equation. We will work with the Newmark method, i.e. γn =

1
2 , βn =

1
4 , α f = αm = 0 in order to keep
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the discussion simple. The case with the generalized alpha method is a simple extension of what follows.
We write the total internal force, including constraint force terms, as

Ftot(d̂, λ̂) = F int(d̂)+Mâ+Cv̂+GT
λ̂ (1.21)

The incremented total force is given by

Ftot(dn+1,λn+1) = Ftot(d̂, λ̂)+
∂Ftot

∂d̂
∆d +

∂Ftot

∂λ̂
∆λ (1.22)

= Ftot(d̂, λ̂)+A∆d +GT
∆λ (1.23)

(1.24)

The force balance says that

Fext
n+1 = Ftot(dn+1,λn+1) (1.25)

Simplifying, we obtain

A∆d +GT
∆λ = Fext

n+1− F̂ int −Cv̂−Mâ−GT
λ̂ (1.26)

which corresponds to the first equation in the system of equations given by equation 1.18.

1.3.2 Damping in Nonlinear Solutions

A number of sources of damping in the solution of linear and nonlinear solutions have been identified. It
is useful to list them for comparison, as in Table 1. Note in particular, that proportional damping, common
in linear systems, requires a slightly different definition in nonlinear systems, and will also require explicit
formation of a damping matrix.

1.4 Explicit Transient Dynamics

An transient dynamics capability using an explicit integrator has been developed for specialized applica-
tions. Note that Sierra/SD remains a small strain application, even when using the explicit integrator. This
integrator is used because it may be advantageous when interfacing with other applications which control
the time step. The implicit integrator requires no linear solve of the stiffness matrix, and does not require a
new factorization when the time step changes. It can be used with both linear and nonlinear elements.

1.4.1 Central Difference Operator

Consider the following equation for a spatially discretized finite element system in motion:

Ku+Cu̇+Mü = fext (1.27)
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Damping Source Discussion

linear dashpots Contributes directly to the C matrix described in equation 1.1.
The matrix is constant.

proportional damping Also known as Rayleigh damping,

αMo +βKo

The damping is proportional to velocity. Note that the effec-
tive damping matrix is constant. Damping is not proportional
to the tangent matrix, Kt .

linear viscoelasticity Determined by material parameters.

nonlinear energy loss Many nonlinear elements contribute to this form of damping.
It does not generate a damping matrix term, and often moves
energy from lower frequencies to higher frequencies. An ex-
ample is the Iwan element.

nonlinear material Similar to nonlinear elements.

numerical damping No damping matrix is generated. Most of the energy loss is
at frequencies above the Nyquist frequency. Controlled by
parameter RHO.

Table 1. Sources of Damping in the Solution
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In the above equation, u represents the displacement vector, K represents the matrix of stiffness terms,
C represents the matrix of damping terms, and M represents a matrix of mass terms. The vector fext is
calculated from a system of applied loads.

The above equation of motion, Equation 1.27, is a system of ordinary differential equations with constant
coefficients. Difference expressions can be used to approximate the velocities and accelerations in terms
of the displacements appearing in the equation. A commonly used difference expression is the central
difference operator. The central difference operator is as follows:

an =

un+1−un
∆tn+1/2 −

un−un−1
∆tn−1/2

(∆tn+1/2 +∆tn−1/2)/2
(1.28)

In the above equation, n+ 1 denotes information at time tn+1, n denotes information at time tn, and n− 1
denotes information at time tn−1. The increment in time from tn to tn+1 is ∆tn+1/2, and the increment in time
from tn−1 to tn is ∆tn−1/2. The term an is an acceleration value in the vector ü. The expression

un+1−un

∆tn+1/2 (1.29)

is the velocity, vn+1/2, at the half time step ∆tn+1/2. The term vn+1/2 is a velocity value in the vector u̇. The
expression

un−un−1

∆tn−1/2 (1.30)

is the velocity, vn−1/2, at the half time step ∆tn−1/2. The velocity is constant over a time step.

When a solution is known at time tn and time tn−1, the solution can be determined at time tn+1 from
Equation 1.28, the central difference operator. We use the previous information to project the solution to time
tn+1. To understand how we project the solution ahead to time tn+1, we return to the equation of motion. We
use the equation of motion without the damping matrix to simplify our discussion. The equation of motion
at time tn is

Kun +Mün = fext
n . (1.31)

In the above equation, the product Kun is simply the internal force vector at time tn. The above equation of
motion reduces to

Mün = fext
n − fint

n . (1.32)

The acceleration vector at time tn is calculated from

ün = M−1(fext
n − fint

n ) . (1.33)
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Now that we have the acceleration at time tn, we can compute the velocity at the half time step tn+1/2

and the displacement at the time step tn+1 with the following equations:

(vn+1/2)i = (vn−1/2)i +(an)i(∆tn+1/2 +∆tn−1/2)/2 (1.34)

(un+1)i = (un)i +(vn+1/2)i∆tn+1/2 (1.35)

In the above equations, the subscript i denotes quantities associated with the ith degree of freedom. Once the
vector un+1 has been calculated, we can again advance the time step.

It is important to note that the central difference operator is conditionally stable. If the time step ∆t
exceeds the value 2/

√
λ2, where λ2 is the maximum eigenvalue determined by the eigenvalue problem

Kφ−λ
2Mφ = 0 , (1.36)

the problem becomes unstable.

Typically, the mass matrix for an explicit, transient dynamics code is diagonalized (See Reference2).
When the mass matrix is diagonalized, the acceleration for each degree of freedom can be written simply as

(an)i = ( f ext
n − f int

n )i/(m)i . (1.37)

The diagonalization is done for purposes of performance. When the mass matrix is diagonalized, the appli-
cation of kinematic boundary conditions and certain constraints becomes extremely simple, and no linear
solves are required.

Note that, in our above description of the implementation of the explicit scheme, if we include damping,
the damping matrix C times the velocity vector produces a damping force vector that is added to the right
hand side of Equation 1.32.

Now that we have outlined the basics of an explicit solution technique, we will consider how some of
the basic functionality – kinematic boundary conditions, constraints, tied surfaces, and superelements – are
implemented for an explicit solver.

1.4.2 Mass Matrix Solutions

A diagonal mass matrix simplifies the explicit integration in several ways. Most important of these is that
there is no need for a linear solve as each degree of freedom is uncoupled from the rest. Speed of the
solution is critical as the conditionally stable time step can require very small iterations. Other factors,
such as implementation of constraints and boundary conditions, may also be affected by the form of the
mass matrix. In addition, more accurate results for explicit integrators are obtained by using a lumped mass
matrix. (For an implicit scheme, the more accurate results are obtained by using a consistent mass. See
Reference.3)
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Sierra/SD is designed around an implicit iteration scheme and powerful linear solvers are available in
the package. There are several reasons to consider an approach where we do not require that the mass matrix
be fully diagonal.

1. Superelements generated by Craig-Bampton type reductions contain full mass matrices. Since the
mass matrix provides all the coupling to the generalized degrees of freedom, standard lumping ap-
proaches cannot be used. Several other approaches are available including reformulating the superele-
ment (as is done in Abaqus), or other coordinate transformations that simplify the solution. The most
straightforward approach is to solve the linear system for those coupled degrees of freedom.

2. Like super elements, inertias associated with rotating masses may not be easily lumped. These are
typically 6x6 matrices, so existing codes typically handle these as a special case.

3. Elements such as beams may have mass terms that can be easily lumped in the element coordinate
frame. Lumping in an arbitrary rotated frame may cause a dependence of the solution on rotation.
This comes about because the rotational inertia for a drilling degree of freedom differs from that in
bending. This is addressed in a variety of ways in different codes. For example, Nastran usually
eliminates the mass of rotational dofs in beams. Presto ensures that all rotational inertias are identical.
In the limit as the element size goes to zero, these produce the same solution. However, maintaining
a tridiagonal inertia could greatly reduce changes to existing code base and permit ready comparison
with implicit solutions.

Recognizing the need for a rapid solution at each time step we propose lumping the mass matrix where
feasible, but solving equation 1.33 for the remaining mass terms. Solid elements will have diagonal mass
terms, shells and beams will be tridiagonal, mass elements will be 6x6 and superelement mass matrices will
depend on the element.

Discussions with our linear solver folks indicate that these solves should be extremely fast. In most cases
there will be little or no coupling outside the subdomain, so a sparse direct backsolve is all that is required
at each time step. The solver preconditioner will be tuned for these special characteristics. We expect the
linear solve to be much less expensive than the computation of internal forces.

It is important that this solution strategy be compatible with follow on approaches that may not use a
full linear solve. We see no incompatibilities with the exception of the element formulations for diagonal
versus partially lumped mass matrices. For UC-2, details of applying superelements without a system solve
are to be addressed later.

1.4.3 Kinematic Boundary Conditions

A wide variety of kinematic boundary conditions can be implemented for an explicit solution technique.
These boundary conditions are similar to those that can be found in an implicit code – fixed displacements,
fixed rotations, prescribed displacement, etc. For the problem formulation in Equation 1.33, kinematic
boundary conditions are enforced by adding reaction forces to the right-hand side. The reaction forces are
such that the acceleration at time tn results in the desired kinematic behavior at time tn+1.

Suppose, for example, we want to fix the displacement component (u)i for all time. If degree of freedom
i is associated with a diagonalized mass, we can enforce the boundary condition by adding a reaction force,
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( f react
n )i at each step n that is equal and opposite to the residual term ( f resid)i, where ( f resid)i = ( f ext

n − f int
n )i.

The right hand side term becomes

( f react
n )i +( f resid)i = 0 , (1.38)

and the acceleration term at time n also becomes zero. For this diagonalized mass case, the acceleration is
simply 0/(m)i.

As a second example, suppose we want the velocity at the half time step ∆tn+1/2 for component i to have
a value of vb. The velocity at the half time step tn−1/2 for component i has a value of va. Again, assume
degree of freedom i is associated with a diagonal mass term (m)i. Consider Equation 1.33. The acceleration,
(ap)i, required to produce the prescribed velocity at the half time step ∆tn+1/2 is

(ap)i =
vb− va

(∆tn+1/2 +∆tn−1/2)/2
. (1.39)

If we add (− f resid
n )i +(m)i(ap)i to the residual term ( f resid)i, then the acceleration component i at time tn

becomes

( f resid
n )i− ( f resid

n )i +(m)i(ap)i

(m)i
, (1.40)

which is simply the value (ap)i that produces the prescribed velocity vb at the half time step.

As can be seen from the above examples, each kinematic boundary condition would require its own
unique set of reaction forces to enforce the correct kinematic behavior.

1.4.4 Constraints

Most explicit integrators use a diagonal mass matrix which eliminates the need for a linear solve of the
mass matrix. As a consequence, nondiagonal masses and multipoint constraints (MPCs) must be treated a
special cases. Within Sierra/SD, a linear solve of the mass matrix is effected, which results in the MPCs
being passed into the linear solver. The solver enforces these constraints in exactly the same manner as they
are managed for implicit solutions. The acceleration, velocity and displacement are forced into the a linear
space where all constraints are satisfied.

The explicit integrator solves for acceleration. Displacements are solved indirectly from the acceleration
solution. Specifically,

vn+ 1
2

= vn− 1
2
+an∆t1 (1.41)

dn+1 = dn + vn+ 1
2
∆t2 (1.42)

The displacements are thus linear combinations of the acceleration vectors, and provided that initial condi-
tions are correct, displacements remain in the space where constraints are satisfied.
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1.4.5 Contact with Tied Surfaces

Contact refers to the interaction of one or more bodies when they physically touch. This can include the
interaction of one part of a surface against another part of the same surface, the surface of one body against
the surface of another body, and so forth. Contact capabilities are provided in Sierra applications by the
ACME module (Reference4). The contact algorithms in ACME are designed to ensure that surfaces do
not inter-penetrate in a non-physical way, and that the surface behavior is computed correctly according to
any user-specified surface model. For an explicit solver, ACME uses a two-step process. The first step is
the detection of the overlap of surfaces. The second step is an enforcement phase to remove the overlap.
Enforcement is accomplished with a kinematic approach rather than a penalty approach. In the kinematic
approach, a set of constraint equations is calculated based on the initial penetration of one surface by another.
The constraint equations are used to calculate contact forces to remove the inter-penetration of the surfaces.
(A penalty approach can be thought of as introducing “stiff” springs between contact surfaces as a means of
preventing inter-penetration. The spring forces reduce the overlap to some small tolerance.)

One of the options in ACME is tied surfaces. For the tied surface option, a node on a surface maintains
its relative position on an opposing surface as the two surfaces deform. For tied surfaces, the detection phase
is used initially to determine a set of initial constraint conditions. The enforcement phase uses these initial
constraint conditions throughout the time history for the problem.

1.4.6 Superelements

Superelements consist of a reduced stiffness matrix, KR, and associated reduced mass matrix, MR as de-
scribed in section 1.13. The superelement can include both interface (physical) degrees of freedom and
generalized degrees of freedom. (The generalized degrees of freedom can be used to carry “extra” infor-
mation about the superelement, such as information about behavior at high frequencies.) As an approach
to using a super element with an explicit solver, the reduced mass matrix can be assembled into the mass
matrix appearing on the left-hand side of Equation 1.32. At each time step n, we can compute the internal
forces, (fint

n )R, for the superelement. The internal forces for the superelement are defined by

(f f int
n )R = KR(un)R , (1.43)

where (un)R is the displacement vector associated with the superelement degrees of freedom at time n. The
internal forces associated with the superelement must be assembled into the f int

n vector on the right-hand
side of Equation 1.32.

1.4.7 Stable Time Step

There are two means to arrive at a stable time step.

1. The time step relates to the maximum eigenvalue of the system, τ = 2/ωmax, where ω2
max is the largest

eigenvalue of the system.
(K−ω

2
maxM)φ = 0 (1.44)
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2. an element by element method. The stable step relates to the shortest time for the signal to pass
through the model.

The system level calculation is more expensive, but is the more accurate. Eigenvalues may be computed
using the Lanczos method which is included in the ARPACK package. This is already being used within
Sierra/SD, but the time step calculation computes only the highest eigenvalue.

From the ARPACK documentation for DSAUPD, we are looking for a solution with WHICH=’LA’ to
compute the largest eigenvalues, and with method=2. The “B” matrix is ’G’, for a generalized eigen prob-
lem. The operator required is inv(M)*K.

1.5 Time integration with viscoelastic materials

Here we describe the integration of viscoelastic structures using the generalized alpha method. For the
proper choice of the parameters of the generalized alpha method, the results below reduce to those corre-
sponding to the Newmark-beta method.

1.5.1 Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

utt −∇ ·σ = f (x, t) Ω (1.45)

u(x, t) = 0 x ∈ ΓD (1.46)

σ(x, t) = g(x, t) x ∈ ΓN (1.47)

(1.48)

where u = (ux,uy,uz) is the vector of displacements, σ is the stress tensor, and f (x, t) is the body force. The
boundary of Ω is divided into Dirchlet ΓD and Neumann ΓN subregions.

The Dirichlet conditions lead to the space of admissible functions

V =
[
v ∈ H1(Ω),v(x) = 0,x ∈ ΓD

]
(1.49)

The equation of motion, along with boundary conditions, is cast into the weak form in the standard way

∫
Ω

utt · v+
∫

Ω

σ ·∇svdx =
∫

Ω

f (x, t) · vdx+
∫

ΓN

g(x, t) · vds ∀v ∈V (1.50)

where an integration by parts has been carried out on the middle term, and ∇s =
1
2(∇+∇T ) denotes the

symmetric part of the gradient operator.
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1.5.2 Constitutive equations

The representation of the time-dependent moduli for a viscoelastic material is commonly written in the form
of a Prony series

G(t) = Ginf +(G0−Ginf)ζG(t) (1.51)

ζG(t) = ∑
i

cie
− t

si (1.52)

where G0 is the glassy modulus, Ginf is the rubbery modulus, and ci,si are coefficients used to fit the Prony
series representation to the experimentally measured relaxation curve. A similar expression holds for K(t),
with different values for the constants, and possibly a different number of terms in the series. Assuming
an isotropic viscoelastic constitutive law, we only need to consider two rate-dependent material properties.
In this presentation, we will work in terms of the bulk K and shear G moduli, since experimental data is
typically given in terms of these two parameters.

The constitutive model for an elastic material can be written in terms of the shear and bulk moduli

σ = Dε = (KDK +GDG)ε (1.53)

where K, G are the scalar bulk and shear moduli, and as is shown in equation 9.4.7 in,5

DK =



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



DG =



4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


This constitutive law can be generalized to a linear viscoelastic material as follows

σ(x, t) = (G0−Ginf)DG

∫ t

0
ζG(x, t− τ)

∂ε(x,τ)
∂τ

dτ+GinfDGε(x, t)+ (1.54)

(K0−Kinf)DK

∫ t

0
ζK(x, t− τ)

∂ε(x,τ)
∂τ

dτ+KinfDKε(x, t)

The above expression is then used to represent the stress in the weak form of the equations of motion, 1.50.

Given a finite dimensional subspace Vh ⊂V , we represent the approximate solution in the standard way

uh(x, t) =
n

∑
i=1

φi(x)ηi(t) (1.55)
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where Vh = span(φi), and η(t) represents the unknown time dependence. We also denote Φ(x) = [φi(x)]
as the matrix having φi as the ith column. Inserting this into the equations of motion, and rearranging, we
obtain

Mη̈(t)+(G0−Ginf)K1

∫ t

0
ζG(t− τ)η̇(τ)dτ+

(K0−Kinf)K1

∫ t

0
ζK(t− τ)η̇(τ)dτ+K2η(t) = f (t) (1.56)

where
M =

∫
Ω

ρ(x)ΦT (x)Φ(x)dx (1.57)

is the mass matrix,

K1 = (G0−Ginf)
∫

Ω

BT DGBdx+(K0−Kinf)
∫

Ω

BT DKBdx (1.58)

K2 = Ginf

∫
Ω

BT DGBdx+Kinf

∫
Ω

BT DKBdx (1.59)

are the stiffness matrices, and

f (t) =
∫

Ω

f (x, t) · v(x)dx+
∫

ΓN

g(x, t) · v(x)ds (1.60)

is the right hand side. The corresponding element matrices are defined simply by breaking the integrals into
element wise contributions.

Equation 1.56 represents a system of Volterra integro-differential equations. Without the inertial term,
1.56 represents a system of Volterra integral equations of the first kind. We now consider implicit schemes
for integrating these equations in time. The goal is to reduce the system of equations 1.56 to a system in
standard form

Mη̈(t)+Cη̇(t)+Kη(t) = f̂ (t) (1.61)

where C is a constant damping matrix, and ˆf (t) is a modified right hand side that will include a portion of
the viscoelastic convolution term. We demand that C be independent of time, since this will eliminate the
need for refactoring the left hand side at each time step. The damping (integral) term in equation 1.56 is
certainly time-dependent. However, we will show that it is possible to split this integral term into a time-
dependent and a time-independent part. The time-independent parts remain on the left hand side and become
the damping matrix, whereas the time-dependent parts can be carried to the right hand side, since they are
known quantities. Once the equations 1.56 are reduced to the system 1.61, the standard time integrators for
structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The results for more terms can
be obtained by adding together the results for a single term. The integral in equation 1.56 can be split into
two parts (considering only a single Prony series term)

∫ t

0
e

t−τ

s η̇(τ)dτ =
∫ ti

0
e

t−τ

s η̇(τ)dτ+
∫ t

ti
e

t−τ

a η̇(τ)dτ (1.62)

= e
∆t
s

∫ ti

0
e

ti−τ

s η̇(τ)dτ+
∫ t

ti
e

t−τ

s η̇(τ)dτ (1.63)
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where the first term is a loading history term that is known at time ti. Consequently, it can be treated as
an additional load and brought to the right hand side. The remaining term can be split into two terms, one
containing coefficients of η̇, and the other containing coefficients of η̇i. The former is unknown and thus
becomes Cη̇, whereas the latter is known and thus also contributes to the right hand side.

In order to evaluate the term ∫ t

ti
e

t−τ

s η̇(τ)dτ (1.64)

we first need a representation for the velocity ˙η(τ) in the interval τ ∈ [ti, t]. We present two choices, both of
which are second order accurate.

1.5.3 Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant acceleration within the
time step. With this assumption, the velocity must vary linearly within the time step. Thus,

˙η(t) = ˙η(ti)+
η̈+ ¨η(ti)

2
(t− ti) (1.65)

where η̈ is the (unknown) acceleration at current time t, and ¨η(ti) is the previous acceleration. Although
equation 1.65 is the correct representation for velocity, it is inconvenient in that it would lead to (after
inserting into equation 1.64) a contribution to the mass matrix. This is undesirable, since it would interfere
with the use of a lumped mass matrix. Thus, we re-write the velocity distribution in an equivalent form

η(t) = ˙η(ti)+
η̇− ˙η(ti)

∆t
(t− ti) (1.66)

We note that equations 1.65 and 1.66 are equivalent representations of the velocity. By inserting equation
1.66 into equation 1.64 we obtain

∫ t

ti
e

t−τ

s η̇(τ)dτ =

[
s+

s2

∆t

(
e

∆t
s −1

)]
η̇+

[
−se

−∆t
s +

s2

∆t

(
1− e

−∆t
s

)]
η̇i (1.67)

The first term involves a coefficient times the unknown η̇, which is the unknown velocity at the current time,
and thus it must remain on the left hand side as a damping term contribution. The damping matrix implied
by this term is

C = cK(sK +
s2

K

∆t
(e
−∆t
sK −1))BTDKB+ cG(sG +

s2
G

∆t
(e
−∆t
sG −1))BTDGB (1.68)

The second term is known, and thus it can be added to the load vector.

1.5.4 Midpoint Representation of Velocity

A second implicit scheme can be derived simply by using the midpoint rule on the velocity in the viscoelastic
term. The only difference from the linear approach described above is in equation 1.67.

η̇(t) =
η̇+ ˙η(ti)

2
(1.69)
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This leads to

∫ t

ti
e

t−τ

s η̇(τ)dτ =
s
2

(
1− e

∆t
s

)
η̇+

s
2

(
1− e

∆t
s

)
η̇i (1.70)

In the same way as for the linear velocity approach, we use the term involving η̇ to construct a damping
matrix, and the remaining known terms are carried to the right hand side.

It should be noted that the midpoint scheme is inconsistent in that a different discretization scheme is
used for the viscoelastic term than was used for the overall time integration. The linear representation of
velocity is a consistent scheme. However, both approaches are second order accurate.

1.6 Linear Eigen Analysis

Linear Eigen analysis is a solution of the equation,

(K−λM)φ = 0 (1.71)

The equation is considered linear in the sense that λ appears only to the first power. Solution of the equations
involved is definitely not linear. Practically, there are many linear solves typically associated with a given
eigen pair.

A number of approaches can be used to solve this system. We refer you to an excellent comparison
report for a few of the iterative methods available (see 6). Direct methods such as the QR algorithm or
Jacobi transformations are not scalable to very large systems. In any event, they do not parallelize well. In
Sierra/SD, we rely on the shifted and inverted Lanczos algorithm as implemented in ARPACK. Further, since
the linear solvers that we have at our disposal are ensured convergent only for positive definite systems, we
require a negative shift. Documentation on this method is available in the ARPACK package (see 7).

1.6.1 Constraints and eigenvalue problems

Constraints (in §3 see subsection 3.20) modify equation (1.71) to an eigenvalue problem

A
[

φ

ψ

]
= B

[
φ

ψ

]
λ (1.72)

A =

[
K CT

C 0

]
, B =

[
M 0
0 0

]
that has infinite modes [

0
ψ

]
, B

[
0
ψ

]
= 0.

Approximate solutions of the constrained eigenvalue problem can be misleading if the infinite modes are
not deflated. The deflation technique is due to Hans Weinberger. Fortunately in SierraSD, the deflation
matches the Lagrange multiplier methods used to solve the linear systems8 ,9 and is handled, for the most
part, behind the scenes. Sometimes however, such as during debugging, it is necessary to know exactly
how this works, and this section is included to address that case.
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But before diving in, let’s go over what the the constrained eigenvalue problem, equation (1.72), has in
common with equation (1.71). Multiplying φT and row one of equation (1.72),

Kφ+CT
ψ = Mφλ,

brings us to the unconstrained equation
φ

T Kφ = φ
T Mφλ.

The standard normalization
φ

T (K,M)φ = (Λ, I)

is used here too.

The elimination of the redundant constraints uses the partition (or more precisely reordering) C = [Cd ,Ci]
so that Ci square and non-singular. This is done by the linear solver. The corresponding partition of φ into
dependent and independent vectors is

φ =

[
p
q

]
.

The constraint equation is Cd p+Ciq = 0, or C−1
i Cd p+q = 0 or

F =C−1
i Cd , q =−F p. (1.73)

The dimension of q equals the dimension of ψ. The partition also induces a change in the eigenvalue
problem. [

Kdd Kdi CT
d

Kid Kii CT
i

] p
q
ψ

=

[
Mdd Mdi
Mid Mii

][
p
q

]
λ

To eliminate q, [
Kdd−KdiF CT

d
Kid−KiiF CT

i

][
p
ψ

]
=

[
Mdd−MdiF
Mid−MiiF

]
pλ (1.74)

And finally to eliminate ψ, in equation (1.74) subtract from row one FT times row two. For S defined by

S(K) = Kdd−KdiF−FT Kid +FT KiiF,

the reduced eigenvalue problem is
S(K)p = S(M)pλ

Given p and λ, equation (1.73) determines q. And ψ is determined by

ψ =C−T
i (Midλ−MiiFλ−Kid +KiiF) p

1.7 Random Vibration

Details of random vibration analysis are included in a number of papers2. These few paragraphs document
what was implemented.

2see for example, reference 10.
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1.7.1 algorithm

The first step in the calculation is computation of a modal spatial contribution, Γqq, which is performed in
ComputeGammaQQ. This is accomplished as follows.

Let the modal frequency response be defined as,

qi( f ) =
1

ω2
i −ω2 +2 jωωiγi

The modal force contribution from load a is,

Fia( f ) = ∑
k

φik f a
k sa( f )

= Zi
asa( f )

where f a
k is the k component of the force vector associated with load a, and sa( f ) contains all of the fre-

quency content of the force, but none of the spatial dependence. We have defined Zi
a for each load that

represents the sum of all the spatial contributions for mode i. It represents the frequency independent com-
ponent of the force for load a.

Zi
a = ∑

k
f a
k φik

A transfer function to an output degree of freedom, k, from the input load a, may be written as a modal sum.

Hka( f ) = ∑
i

Fia( f )qi( f )φik

where φik is the eigenvector of mode i.

1.7.2 Power Spectral Density

The displacement power spectral output (at a single location) is a 3×3 matrix.

Gmn( f ) = ∑
a,a′

H∗ma( f )Hna′( f )

= ∑
i, j

∑
a,a′

F∗ia( f )q∗i ( f )φimF∗ja′( f )q j( f )φ jn

= ∑
i, j

∑
a,a′

q∗i ( f )q j( f )φimφ jnZi
aSa,a′( f )Z j

a′

Here Sa,a′( f ) is the complex cross-correlation matrix between loads a and a′, and the superscript ’*’ denotes
complex conjugate. The subscripts m and n are applicable to the 3 degrees of freedom at a single location.

By summing over the loads we may reduce the power spectral expression to a sum on modal contribu-
tions.

Gmn( f ) = ∑
i, j

φimφ jnGi j( f ) (1.75)
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where
Gi j( f ) = q∗i ( f )q j( f )∑

a,a′
Zi

aZ j
a′S

a,a′( f ) (1.76)

Note that with the exception of the Zi
a (which may be computed only once and are a fairly small matrix), all

the terms in equation 1.76 are completely known on each subdomain.

1.7.3 RMS Output

The RMS output for degree of freedom m is given by,

Xrms =

√∫
Gmm( f )d f

=

√∫
∑
i, j

φimφ jmGi j( f )d f

=
√

∑
i, j

φimφ jmΓi j (1.77)

where Γi j =
∫

Gi j( f )d f .

1.7.3.1 Truncation. Note that equation 1.77 involves a summation over modes weighted by Γi j. This
summation is an order N2 operation which can adversely affect performance when there are a large number
of modes. Often many of the terms in Γ are very small. Rows and columns of the sum may be eliminated
with no impact on the overall solution of Xrms.3

1.7.3.2 Parallelization. The parallel result can be arrived at by computing Zi
a on each subdomain, and

then summing the contributions of each subdomain. Note that Zi
a contains the spatial contribution of the

input force. At boundaries that interface force must be properly normalized just as an applied force is
normalized for statics or transient dynamics by dividing by the cardinality of the node. Once Z has been
summed, Γi j may be computed redundantly on each subdomain. The only communication required is the
sum on Z (a matrix dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is just Gmm(ω)ω
4. Subsection 3.26.5 provides details about

transforming power spectra to an output coordinate system.

1.7.4 RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is included in the reference
at the beginning of this chapter. Two methods are available, but both use the integrated modal contribution
Γi j as the basis for their computation. The more complete method relies on a singular value decomposition.
Portions of that method are touched on below

3 A similar truncation can be performed if the quantity of interest is acceleration rather than displacement. In that case, truncation
may be performed on Γi jω

2
i ω2

j .
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1.7.5 Matrix properties for RMS stress

Since S( f ) is Hermitian, it follows that Γqq is also necessarily Hermitian. It will not in general be real.
Therefore, the svd() must be computed using complex arithmetic. We use the zgesvd routine from arpack.
The results from the svd of an Hermitian matrix are real eigenvalues (stored in X), and complex vectors,
stored in Q.

At the element level another svd must be performed. In this case we are computing the singular values
of the matrix C.

C = XQ†BQX

where,

B = Ψ
T AΨ

Obviously, B is symmetric. It can be shown that Q†BQ is Hermitian. If we examine a single element of C
we can see that it contains the sum over all the terms in an Hermitian matrix. That sum is necessarily real,
since it can be computed by adding the lower half with it’s transpose and then summing the diagonal. Let,

Ai j = ∑
m,n

Q∗miBmnQn j = ∑
m,n

ai j

But,

A∗ji = ∑
m,n

Qm, j ∗BmnQ∗ni = ∑
m,n

Qn jBmnQ∗mi = ∑
m,n

a∗i j

We therefore only need use the real svd routines to compute the results at each output location.

The svd calculations provide the information needed to truncate or reduce the model. As the size of the
model grows, the number of modes required for an analysis tends also to grow. However, the computational
time for computing the svd is proportional to matrix dimension cubed. On the other hand, the svd(Γ) is
only computed once. However, the computation of each decomposition of C occurs at each output location
and can significantly affect performance. In the model problem where the dimension of C was allowed to
remain the same as the number of modes, increasing the number of modes from 20 to 100 changed the time
for the analysis by factor of more than 100 (close to the predicted 53). Unfortunately the desired models
may have many hundreds of modes.

The svd(Γ) provides important information about the number of independent processes. Note that C
includes the svd values from this calculation. We truncate by computing all the nmodes x nmodes terms
in B, but only retaining Cdim columns of Q, where Cdim is chosen so the values of X are not too small.
Thus, X [(Cdim)]/X[0] > 10−14. This restricts the dimension of C to a fairly small number, while retaining
all components that contribute significantly to its value. As a result, the entire calculation appears to scale
approximately linearly with the number of modes.

1.8 Modal Frequency Response Methods

The Sierra/SD implementation of the modal acceleration method is described in this section. Separate cases
are considered when the structure does and does not have rigid body modes.
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1.8.1 No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.

(−ω
2M+ jωC+K)û = f̂ (1.78)

Consider the modal approximation

û≈
N

∑
i=1

φiqi (1.79)

where N is the number of retained modes, φi is the i’th mode shape, and qi is the i’th modal dof. For modal
damping, one obtains the uncoupled equations

(−ω
2mi + jωci + ki)qi = φ

T
i f̂ (1.80)

for i = 1, . . . ,N where

mi = φ
T
i Mφi (1.81)

ci = φ
T
i Cφi (1.82)

ki = φ
T
i Kφi (1.83)

(1.84)

are the modal mass, modal damping, and modal stiffness of the i’th mode. Solving equation 1.80 for qi leads
to

qi = (φT
i f̂ )/(−ω

2mi + jωci + ki) (1.85)

Replacing (−ω2M+ jωC)û in equation 1.78 with the modal approximation

(−ω
2M+ jωC)

N

∑
i=1

φiqi (1.86)

leads to

Kû = f̂ +(ω2M− jωC)
N

∑
i=1

φiqi (1.87)

Recall that the mode shapes satisfy the eigenproblem

Kφi = ω
2
i Mφi (1.88)

where ωi is the circular frequency of the i’th mode. Provided ωi 6= 0, one obtains

K−1Mφi = φi/ω
2
i (1.89)

In addition, see Eq. (18.14) of Craig, the damping matrix C can be expressed as

C =
N

∑
i=1

(
2ζiωi

mi

)
(Mφi)(Mφi)

T (1.90)

where ζi is the damping ratio of the i’th mode. Substituting equations 1.89 and 1.90 into equation 1.87 and
solving for û leads to

û = K−1 f̂ +
N

∑
i=1

(ω2/ω
2
i −2ζi jω/ωi)φiqi (1.91)

The acceleration frequency response, â, can be obtained by multiplying equation 1.91 by −ω2.
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1.8.2 Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be used in the case when
the structure has rigid body modes. The main difference between the approach presented here and Craig’s
method11 (pp. 368-371) is in the way that the flexible response is computed using the singular stiffness
matrix. Craig removes the rigid body modes from the stiffness matrix using constraints. In our approach,
we first orthogonalize the right hand side with respect to the rigid body modes, and then use an iterative
solver such as FETI to solve the singular system directly. Although the two methods are equivalent the latter
is much more convenient from the implementation point of view. Note, however, that the implementation
is likely to fail on a single processor since the direct solvers in Sierra/SD are unable to manage a singular
stiffness matrix.

The equations of interest are the frequency domain equations of motion

−ω
2Mu+ jωCu+Ku = f (1.92)

Since the stiffness matrix may be singular, we first split the solution into a rigid body part and a flexible part.

u(ω) = uR(ω)+uE(ω) (1.93)

= ΦRqR(ω)+ΦEqE(ω) (1.94)

where the subscript R refers to rigid body mode contributions, and E refers to contributions from flexible
modes. We define N as the total number of degrees of freedom, NR as the number of rigid body modes
and NE the number of flexible modes, where N = NR +NE . Then, ΦR is an NxNR matrix of rigid body
eigenvectors, ΦE is an NxNE matrix of flexible eigenvectors, qR is a vector of dimension NR, and qE is a
vector of dimension NE . We assume mass normalized eigenvectors.

We now substitute equation 1.94 into equation 1.92, and premultiply both sides by ΦT
R and ΦT

E . This
yields two sets of equations, after using orthogonality and the fact that KΦR = 0.

−ω
2qR + jωCRqR = Φ

T
R f (1.95)

−ω
2qE + jωCEqE +KEqE = Φ

T
E f (1.96)

where CR,CE are diagonal matrices containing the modal damping contributions, and KE is a diagonal matrix
containing the eigenvalues. In particular, the ith diagonal entry of CE is 2ωiζEi , and the ith diagonal entry
of CR is 2ωiζRi . For most applications, CR is null. Solving these equations we obtain the component-wise
values of the coefficients

qRi =
ΦT

Ri
f

−ω2 + jωCRi

(1.97)

qEi =
ΦT

Ei
f

−ω2 + jωCEi +ω2
Ei

(1.98)

Equation 1.96 can be solved for qE , and substituting this into equation 1.94, we obtain
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u = ΦRqR +ΦEK−1
E Φ

T
E f +ω

2
ΦEK−1

E qE − jωΦEK−1
E CEqE (1.99)

The first term in equation 1.99 is known. The third and fourth terms of equation 1.99 can be computed by
modal truncation, and in fact these are the same as the second and third terms of equation 1.91. The second
term in equation 1.99 is the static correction, and is not readily computable in the present form since all of
the flexible modes would have to be known to compute it.

In order to compute the second term in equation 1.99, we note that the matrix aE = ΦEK−1
E ΦT

E is the
inverse of the elastic stiffness matrix, that is, the stiffness matrix without the rigid body components. Craig
gives a procedure of constraining the rigid body modes in the stiffness matrix in order to compute the prod-
uct aE f . This procedure would require re-sizing the global stiffness matrix midway through the modalfrf
solution procedure, and this is tedious from the code development standpoint.

A more convenient approach is to use FETI to solve the system Ku = fE , where fE is obtained by
orthogonalizing the right hand side f with respect to the rigid body modes, via Gram Schmidt. We note that
FETI can solve problems of the form Ku = f even if K is singular, provided that the right hand side f is
orthogonal to the rigid body modes.

The procedure is to first apply Gram Schmidt orthogonalization to obtain fE . Then, we use FETI to solve
the system KuE = fE , where K is singular. Finally, to be sure uE is orthogonal to the rigid body modes, we
apply Gram Schmidt one more time to uE . Though in theory uE is already orthogonal to the rigid body
modes after the FETI solve, numerical round-off may result in a small loss of orthogonality (especially if
the solver tolerance is loose), and thus we apply this final orthogonalization to uE to be on the safe side. The
resulting solution we again denote by uE . Then,

uE = ΦEK−1
E Φ

T
E f (1.100)

and thus all of the terms in equation 1.99 are known. Thus the modal frequency response can be computed
using equation 1.99.

We note that the orthogonalizations referred to above involve only the standard dot products. That is, in
order to make f orthogonal to one rigid body mode φi, the Gram Schmidt factor is

α =
φT

i f
φT

i φi
(1.101)

and then
fE = f −αφ (1.102)

The dot products appearing in these expressions do not involve the mass matrix. They are the standard dot
products.

1.8.3 Example

Finally, we present an example of the performance of this method as compared to the standard modal dis-
placement method. The example is a beam composed of 320 hex8 elements. The beam is free-free, so that



38

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
100

101

102

103

104

105

106

Frequency

A
m

pl
itu

de

Comparison of frf methods with rigid body modes

directfrf
modal disp
modal accel

Figure 1. A comparison of the modal displacement, modal acceler-
ation, and direct frequency response approaches. The modal accelera-
tion method gives a better approximation to the direct approach than the
modal displacement method.

all rigid body modes are present. The frequency response is computed up to 9000 Hz, and 15 modes are
used in the modal expansions. The 15th mode had a frequency of 11362 Hz. In Figure 1, the two methods
are compared with the direct frequency response approach. It is seen that the modal acceleration method
gives a significantly improved performance over the modal displacement method.

1.9 Fast Modal Solutions

Because modal based solutions such as modaltransient do not require a linear solve, they can greatly
accelerate the solution of linear problems. However, in the standard approach, these solutions may not
show the performance that could be achieved. This is because the standard approach manipulates a lot of
data when the model size is large, see Figure 2. We here address a method for much higher performance
provided that output is required on a very limited data set and that the force is simple.
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1. Compute the full eigen problem, (K−λM)Φ = 0

2. Compute the applied load (in modal coordinates) at each time. f i =

∑k ΦkiFext
k

3. Compute the modal system response from equation 1.106.

4. Expand from modal to full physical space.

Xk
n+1 =

Nmodes

∑
i

qi
n+1Φki

5. Collapse the physical space to the output degrees of freedom.

x̃ = subset(X)

The parallel data (matrices and
vectors Φ and X) are partitioned
by processor.
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Figure 2. Standard Modal Transient Algorithm. Note that while the
output is required on only a small part of the model, a calculation of
data on all degrees of freedom is performed first, and results are then
collapsed back to the reduced model.
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1.9.1 Modal Solution Summary

Using the trapezoidal rule, Newmark-Beta integrator4 equation 1.6 may be condensed to,[
4

∆t2 M+
2
∆t

Ĉ+K
]

dn+1 = Fext
n+1 +Ĉ

[
vn +

2
∆t

dn

]
+M

[
4

∆t2 dn +
4
∆t

vn +an

]
(1.103)

Also,

vn+1 = −vn +
2
∆t

(dn+1−dn) (1.104)

an+1 = −an +
4

∆t2 (dn+1−dn)−
4
∆t

vn (1.105)

With the usual modal transformation, dk = ∑i Φkiq, λi = ΦT
i KΦi, and ΦT MΦ = I, we may write the equiv-

alent modal equations.
aiqi

n+1 = qi
n + f i

n+1 + f̃ i (1.106)

where

ai =
4

∆t2 +
2
∆t

γi +λi

f i
n+1 = ∑

k
ΦkiFext

k

f̃ i = q̈n +

(
4
∆t

q̇n +
4

∆t2 qn

)
+ γi

(
q̇n +

2
∆t

qn

)
and,

γi is the modal damping

These equations are now uncoupled, i.e. the solution for each modal coordinate is independent of any other.

1.9.2 Parallel Fast Modal

In many cases the analyst is interested only in the data in a very reduced set (such as data in the history
file). In these cases, large amounts of data are processed, only to reduce the data at each time step to a
the reduced system. The parallel computer processing is being expended to process large vectors that are
not really needed, and for which no useful output is provided. If the reduced set may easily fit on a single
processor, and if the modal force may be adequately determined, then a streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 3 for transient dynamics, and in Figure 4 for modal frequency
response. The same set of equations are now solved, but since the entire physical model exists on all
processors, we can compute the sum of terms in parallel.

4 This implies that αm = α f = 0, βn = 1/4, and γn = 1/2.
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1. Begin with eigenvalues, λ, and reduced eigen vectors, φ. We also need the
generalized components of modal force, ζs

i (ω) = ∑k ΦkiF̂s
k (ω).

2. Compute the time response of the modal system response in parallel. Each
processor gets only a subset of modes, and solves equation 1.106 indepen-
dently.

3. Compute the response on the physical space using the sum of modes as a sum
across processors. NOTE: this is restricted to the reduced physical space.

x̃k =
Nproc

∑
p

Nmodesproc

∑
i

φkiqi

Figure 3. Fast Modal Transient Algorithm

1. Begin with eigenvalues, λ, and reduced eigen vectors, φ. We also need the
generalized components of modal force, ζs

i (ω) = ∑k ΦkiF̂s
k (ω).

2. Compute the frequency response of the modal system response in parallel.
Each processor gets only a subset of modes, and solves the following equa-
tion independently.

qi(ω) =
f q
i (ω)

ω2−ω2
i −2 jγiωωi

where ω =
√

λi and j =
√
−1.

3. Compute the response on the physical space using the sum of modes as a sum
across processors. NOTE: this is restricted to the reduced physical space.

x̃k =
Nproc

∑
p

Nmodesproc

∑
i

φkiqi

Alternatively, each processor may be assigned the computation of a fre-
quency range, and compute all the modal contributions to that range. A
processor sum would gather all the results for output.

Figure 4. Fast Modal Frequency Response Algorithm



42

1.9.3 Determination of Modal Force

The fast algorithm outlined in the previous section depends on determination of the modal force vector,
f i(t). But, the physical loads may be applied to degrees of freedom other than those in the limited output
set, so that the eigenvector, Φ of the full system would be required.

However, in most cases,5 the force in the physical coordinates is computed as a sum of spatial and
temporal terms.6

Fext(x, t) =
Nsets

∑
s

F̂s(x)δs(t)

Typically each spatial function F̂s is determined by a nodeset, sideset or body load input, while the temporal
term, δs(t), is a multiplier defined in a FUNCTION section. We may thus write,

f i(t) = ∑
k

ΦkiFext(xk, t) (1.107)

= ∑
k

Φki

Nsets

∑
s

F̂s(x)δs(t)

=
Nsets

∑
s

ζ
i
sδ

s(t) (1.108)

where,
ζ

i
s = ∑

k
ΦkiF̂s

k (1.109)

Thus, a necessary part of the preparation for a fast modal solution includes calculation of the generalized
components of force, ζi

s.

1.10 Complex Eigen Analysis - Modal Analysis of Damped Structures

1.10.1 Modal Analysis of Damped Structures

Sierra/SD will solve the eigenvalue problems for structures with some types of damping. The algorithms
are designed for internally damped structures such as from viscoelastic materials. The package is called
Ceigen, and the parameters to be aware of are eig tol, nmodes, and viscofreq. The first two parame-
ters, eig tol and nmodes will be familiar to Sierra/SD users that solve eigenvalue problem for undamped
structures. eig tol is the convergence tolerance for the eigenvalues, and nmodes is the number of requested
eigenvalues. viscofreq approximates the first flexible mode of the structure. The default value for eig tol
is 1.e−8.

The complex eigen value problem which we solve is also known as the quadratic eigenvalue equation.[
K +λD+λ

2M
]

φ = 0 (1.110)

5 If user defined functions of space are included, this situation is violated, and the fast algorithm cannot be used.
6 What is described here for time applies equally well for functions in the frequency domain. They are products of spatial and

frequency components.
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where,

K = the stiffness matrix

D = the damping matrix

M = the mass matrix

λ = the complex frequency.

All of the matrices are independent of frequency. Note that we are solving for λ = iω+ γ, not ω2.

1.10.2 Input File Specification

The Sierra/SD input file specification is similar to the specification for transient simulations. To change
a working Sierra/SD input file for a transient problem into a Sierra/SD input file for Ceigen, change the
Solution and Parameters blocks. The example below illustrates how the Solution and Parameter blocks are
modified for modal analyses.

SOLUTION
case ceig
ceigen nmodes 20
viscofreq=1.e+4
END
PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was was needed for the transient simulation, and is
still needed for modal analyses.

1.10.3 Output File Format

The output is very similar to the output for the undamped eigenvalue problem. The results file contains any
requested data. Supplemental information is written to the screen that is useful for algorithm development.

The Results file foo.rslt tabulates the values λ/(2π) for (λi) that solve equation (1.111). Pure real
eigenvalues are not written to the Results file.7 If λi has been found with i in the range, 1≤ i≤ 24,27≤ i≤ 34,
then the missing eigenvalues (λi)25≤i≤26 are real eigenvalues that are omitted. The number of eigenvalues
written in the Results file is less than or equal to nmodes.

As is the case with the undamped eigenvalue problem, Sierra/SD will print a table to the screen. The
table is titled “Ritz values (Real, Imag) and direct residuals”, and has four columns of real numbers. The
number of eigenvalues that are actually computed may be larger or smaller than the number requested.

7Real modes correspond to an overdamped mode with no oscillatory component. These are usually generated from numerical
artifacts discussed below, and are seldom of practical value
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Some real eigenvalues may appear among the converged eigenvalues. The table will contain any converged
real eigenvalues (zero in column two). Columns three and four are two different residual norms for each
eigenvalue. Eigenvalues with large residual norms are not converged. The residual norm in the third column
is less sensitive to the linear system relative residual norm bound than the residual norm in the fourth column
is After each implicit restart, all the approximate eigenvalues are printed to the screen.

1.10.4 Some Back Ground

The eigenvalue problem for an undamped structure

KΦ = MΦΩ
2, Φ

T MΦ = I,

Ω = ⊕iωi, has been discussed elsewhere in this document. Sierra/SD returns the frequencies ω/(2π).
Ceigen solves a similar problem. Ceigen solves the quadratic eigenvalue problem

[Mλ
2 +Dλ+K]u = 0, uT u = 1. (1.111)

In the undamped case, D = 0, λ = iω.

A second order linear differential equation is the same as a first order system. Similarly a quadratic
eigenvalue problem is the same as a matrix eigenvalue problem of twice the size.

Linear problems such as matrix eigenvalue problems are solvable in that it is possible to find all of the
solutions. For matrix eigenvalue problems the key idea is deflation. One big subspace is used to compute
all of the eigenvalues. Small eigenvalues tend to be computed early and are deflated from the problem. The
reward for deflation is that the gravest remaining eigenvalues are much more likely to be computed next.
For general nonlinear eigenvalue problems on the other hand, no robust algorithms are known to the author.

1.10.5 Viscoelasticity

The eigenvalue problem for viscoelastic problems12 in the most simple case (one term Prony series) has the
form

[Ms2 +D(s)s+K]u = 0. (1.112)

K = BE∞, D(s)s = B(Eg−E∞) f (s),

f (s) = s/(s+a) = 1− (s/a+1)−1.

Prony series damping in the time domain12 creates a frequency domain problem with real eigenvalues that
are not physical.12 Some care is needed to avoid the real eigenvalues in computations.

Here is a sketch of justification that the Prony series problem has real eigenvalues. The eigenvalue
problem has a closed form solution in terms of the eigenvalues of the undamped problem. The one term
Prony series damping increases the degree of the characteristic equation from two to three, and the third root
must be real.
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1.10.6 Viscofreq

The eigenvalue problem in equation (1.112) is not a quadratic eigenvalue problem (M,D,K). The obvious
approximation is to evaluate D(s) at some fixed so near to the wanted eigenvalues. The user parameter
viscofreq=ω is a real number such that so = iω. In a later release so = r+ iω for some internally computed
value r.

Using a value of viscofreq that is much too small may degrade performance. As viscofreq increases,
the eigenvalues do change, and Sierra/SD converges more quickly. The cluster of real eigenvalues moves
left, away from zero, and it becomes possible to compute more of the complex eigenvalues. Over-estimates
of viscofreq are safer than underestimates.

Suppose that so = r+ iω. A different quadratic eigenvalue problem is used.12 Both D and K are modified.
The approximation is more accurate for problems in which r is much more accurate than ω. Also (M,D,K)
are all real matrices. The eigenvalues and eigenvectors come in complex conjugate pairs.

Important to be aware that no constant damping matrix inherits the property of D(s) that

lim
s→∞

D(s) = 0.

Physically, this means that the eigenvalues in equation (1.111) that are far from viscofreq are over-damped.
If for a given mode shape, so is closer to the real eigenvalue of equation (1.112) than either complex conju-
gate pair, then Ceigen may return the real eigenvalue. For example equation (1.112) has many real eigen-
values clustered left of −a.

1.10.7 Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergence criteria in the ARPACK package use a
trust region. CEigen will compute the right-most eigenvalues of the eigenvalue problem in equation (qevp).
If the k-th mode does not satisfy the convergence tolerance, and k≤nmodes, then ARPACK is not converged,
no matter how many other eigenvalues are converged.

The authors have gone to great lengths to filter out real eigenvalues. Nonetheless in problems with a
cluster of real eigenvalues among the right-most eigenvalues, it is very difficult to compute eigenvalues high
into the frequency range. If such a problem arises, increase eig tol (multiply by ten), increase nmodes
(add ten), and most importantly increase viscofreq (double).

1.10.8 ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent of frequency. However, the damping
and stiffness matrices can be functions of frequency, depending on the formulation. There are two possible
formulations. The first one results in a complex, frequency dependent damping matrix, and a real-valued,
frequency independent stiffness matrix. The second results in a frequency- dependent, real-valued damping
matrix and a frequency-dependent, real valued stiffness matrix. We chose the second formulation since
the complex-valued damping matrix is somewhat difficult to deal with in quadratic eigensolvers. The two
formulations are the same up to the order of the linearization error.
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Consider the simplest possible viscoelastic material, characterized by a single term of the Prony series.
The equation of motion for a 1D system with this material is given below. The full 3D case is similar, except
that it has separate terms for the bulk and shear components.

[
K∞ + sD(s)− s2M

]
u = f (s) (1.113)

Here, s is the Laplace transform frequency, f (s) is the frequency dependent force, and the damping matrix
is now a function of frequency.

D(s) = (EG−E∞)
1

s+1/τ
B (1.114)

with E∞, the Young’s modulus for high frequencies, EG the modulus for low (or glassy) frequencies, τ is the
Prony series relaxation time, and K∞ = E∞B is the stiffness at high frequencies.

We now return to equation 1.113, and consider different ways of linearizing the relation, since for the
quadratic eigenvalue problem, we may only solve equations of the form in equation 1.110, i.e. quadratic in
λ or s.

1.10.8.1 User Specified frequency of linearization We define viscofreq, ω and sω = r+ iω, which is
the complex number about which the linearization takes place. In the current methodology, r is zero.

First, we split D(sω) into its real and imaginary components by multiplying by (r+1)−iωτ

(r+1)−iωτ
.

D(s) = (EG−E∞)
1

s+1/τ
B (1.115)

= (EG−E∞)
τ

iωτ+(rτ+1)
B (1.116)

=
τ((rτ+1)− iωτ)

(rτ+1)2 +ω2τ2 (EG−E∞)B (1.117)

Then we also temporarily replace the s in front of sD(s) with sω. This gives,

sD(s) = (iω+ r)D(iω+ r) (1.118)

=
τ(iω+ r)+ω2τ2 + r2τ2

(r+1)2 +ω2τ2 (EG−E∞)B (1.119)

Finally, we replace iω+r with s to go back to the quadratic eigenvalue problem. This results in a contribution
to the the stiffness matrix, and a real damping matrix.[(

E∞ +(EG−E∞)
ω2τ2 + r2τ2

(r+1)2 +ω2τ2

)
B+ s

(
τ

(r+1)2 +ω2τ2

)
(EG−E∞)B+ s2M

]
φ = 0 (1.120)

Thus we see that the damping matrix is purely real, but the stiffness matrix gets an additional (positive)
real contribution.

Practically of course, the systems are far more complex. Typically there is more than one material, and
that material has a number of Prony terms. Equation 1.120 is modified, but the overall effect is the same, i.e.
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the stiffness matrix is increased by a viscoelastic term, and the damping term is also modified. Effectively
we have the following.

K̃(r+ iω) = ∑
elem

K̃elem(r+ iω) (1.121)

where K̃elem is the modified stiffness matrix.

K̃elem(r+ iω) = Kelem + imag(Delem(r+ iω))

Likewise,
D̃elem(r+ iω) = real(D(r+ iω)) (1.122)

We now solve the linearized eigenvalue equation for λ,

[
K̃(r+ iω)+ iλD̃(r+ iω)−λ

2M
]

φ = 0 (1.123)

1.10.8.2 A Simple Error Estimate This question is now how well the eigenvalues computed from equa-
tion 1.120 approximate the true eigenvalues of equation 1.113.

First, we define the distance from a given computed eigenvalue, sc, to the point of linearization, sω as δ.

δ = sc− sω (1.124)

Note that δ is a complex-valued quantity.

Next, we define the residual as the vector resulting from inserting sc and the corresponding computed
eigenvalue, φc, into equation 1.113. (

s2
cM+ scD(sc)+K

)
φc = res (1.125)

The residual, as defined in equation 1.125, is a computable quantity. Obviously, if the residual is large, then
the error in the computed eigenvalue and eigenvector is large. However, the more interesting question from
the analyst’s perspective is how large may δ be for one to expect accurate eigenvalues.

1.11 SA eigen

The quadratic eigenvalue problem which we address in this solution method is given by the equation below.(
K +λC+λ

2M
)

φ = 0 (1.126)

where, K is the stiffness matrix,
C is a damping and coupling matrix, and
M is a mass matrix.

More specifically, for a structural acoustic system.([
Ks 0
0 Ka

]
+λ

[
Cs L
−ρaLT Ca

]
+λ

2
[

Ms 0
0 Ma

])[
φs

φa

]
= 0 (1.127)
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Here the subscripts refer to structural or acoustic domains, ρa is the density of the fluid and L is a coupling
matrix. Note that for this formulation, φa represents the acoustic velocity potential, which relates to the time
derivative of the acoustic pressure, φa = ∇u̇a.

The matrix C will be completely asymmetric if it contains only coupling terms. In this case it is called
gyroscopic, and it can be shown that the system is Hermitian, and has real eigenvalues. However, if there is
additional damping in the system, as from ρC damping on the acoustic domain, then C is of mixed symmetry,
and the eigenvalues and eigenvectors are complex. The stiffness matrix is symmetric positive semi-definite,
while the mass matrix is symmetric positive definite.

While various methods are available for solving the generalized, linear eigenvalue problem,8 solution
of the quadratic eigenvalue problem is more challenging. The approach followed here is to transform the
problem into a reduced space, solve the corresponding dense matrix system completely, and project back
out to the original space. The challenge, of course, is to properly choose that space.

In general, if the eigenvector, φ, can be written in terms of generalized coordinates, q, then this approach
may be taken. For a given transformation matrix, T , which determines φ given q, we have the following.

φ = T q (1.128)

T † (K +λC+λ
2M
)

T q = 0 (1.129)(
k̃+λc̃+λ

2m̃
)

q = 0 (1.130)

Note that the only restriction on T is that we may adequately write φ = T q. In other words, T must span
the space of the eigenvectors. In particular, T need not be unitary or even orthogonal. However for the
transformation to be useful for a model reduction, there must be many fewer columns than rows in T . Note
that T † is the transpose, complex conjugate of T , and that the left and right eigenvectors of equation 1.127
are complex conjugates of each other.

The structural/acoustics problem may be viewed as a two subdomain problem.9 There are a variety of
basis functions that have been examined for connecting such subdomains. Two common sets are listed in
Table 2.

We here investigate only the free-free method. Though this method has proved to converge rather slowly
for structure/structure problems, the coupling between the structural and acoustic domains is often rather
weak, so this may be adequate. For the problems of interest, a full Craig-Bampton type solution is almost
certainly overkill, and will result in a dense matrix too large for standard solution methods. We may find
it advantageous to augment the free-free modes by adding basis functions near the surface. Some thoughts
that have been considered include the following.

• A uniform pressure mode could be added to both the acoustic and structural responses.

• We could consider the static acoustic modes that are generated by the deformations of the structural
eigen analysis. We anticipate that the structural deformations will have a larger control over acoustic
modes, so we may not need to be as concerned about the impact of the acoustic pressures on the
structure, but we may want to include some of these as well. Perhaps some methods could be used to
identify a subset of modes that would best aid in model completeness and convergence.

8The generalized linear eigenvalue problem is (K−λM)φ = 0.
9There is no requirement that each of these subdomains be topologically connected in any special way.
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Table 2. Potential Basis Functions for Subdomain Reduction

Name Basis Function
Free-Free modes The unconstrained eigenvectors of each subdomain are

computed and used as the columns of T . When the number
of columns in T equals the number of rows, this basis is
complete.

Craig-Bampton The eigenvectors of each subdomain are computed with
the interface fixed. These eigenvectors are supplemented
with constraint modes computed by fixing all the interface
degrees of freedom except one. That dof receives a unit
static deformation. This method has been shown to con-
verge near optimally for structure/structure interactions.

• Spline or boundary expansions are possible.

1.12 Quadratic Modal Superposition

Consider the system
Mü+Cu̇+Ku = f (t) (1.131)

where M, C, and K are the mass, damping, and stiffness matrices. Standard methods may be used to solve the
eigenvalue equation derived from 1.131 only in the case where the eigenvectors of K and M also diagonalize
C (as in proportional damping for example). Unfortunately, such cases are usually not physical, and are rare
in practice. For a general damping matrix, no procedures are available to directly solve the eigen equation.
For an excellent survey article on quadratic eigenvalue systems, see the article by Tisseur.13

However, the second order system may be transformed to a larger, first order system which does have a
known solution. We linearize the system as follows. Define,

w =

[
u̇
u

]
(1.132)

If we consider the eigenvalue problem corresponding to equation 1.131, we would set the right hand side
f (t) to zero. Then, there are many options for the linearization, but the one chosen for QEVP is[

M 0
0 K

]
w =

[
0 M

−M −C

]
ẇ (1.133)

We assume a solution of the form w = φeλt , and arrive at the eigenvalue problem,

Aφ = λBφ (1.134)

where

A =

[
M 0
0 K

]
, (1.135)
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and

B =

[
0 M

−M −C

]
(1.136)

Equation 1.134 yields the “right” eigenvectors. As is seen later, we also need the “left” eigenvectors, which
correspond to the eigenvalue problem,

ψ
†A = λψ

†B (1.137)

We denote the left eigenvectors as ψi to distinguish them from the right eigenvectors φi.

1.12.1 Diagonalization and Modal Superposition

Symmetric system matrices are always diagonalizable, using the matrix formed by their eigenvectors. How-
ever, when nonsymmetric matrices, such as those of equation 1.133, may be impossible to diagonalize. This
has significant implications for modal superposition techniques, since if A and B cannot be diagonalized by
pre and post multiplying by matrices of eigenvectors, then the reduced (modal) equations of motion will be
coupled. The primary advantages of modal superposition would be lost.

As discussed in the literature,13, 14, 15 one case where the matrices A and B are diagonalizable is if all of
the eigenvalues are distinct. If there are repeated eigenvalues, then the matrix is still diagonalizable, as long
as the eigenvectors corresponding to repeated eigenvalues are linearly independent. This can be summarized
by the theory of geometric and algebraic multiplicities of eigenvalues, as follows:16

• The algebraic multiplicity of an eigenvalue is defined as the number of times that this eigenvalue is
repeated in the list of eigenvalues of the matrix.

• The geometric multiplicity of an eigenvalue is the dimension of the space spanned by its eigenvectors.
Thus, for an eigenvalue with an algebraic multiplicity of 2, the geometric multiplicity would be 2 if
the corresponding eigenvectors are linearly independent, and 1 if they are linearly dependent.

• An n× n matrix is diagonalizable if and only if the geometric multiplicity is equal to the algebraic
multiplicity for every eigenvalue λ.

In short, for the matrix to be diagonalizable, the eigenvectors corresponding to repeated eigenvalues must
be linearly independent. If the eigenvalues are all distinct, then the matrix is always diagonalizable.

It is also interesting to discuss the circumstances under which the eigenvalues and eigenvectors of A and
B come in complex conjugate pairs. When this is the case, significant savings in storage and computational
time can be achieved. The general rule is quite simple to prove.17 If the entries in a matrix are all real-
valued, then any complex eigenvalues or eigenvectors that arise must come in complex conjugate pairs. In
order to prove this, we note that for a matrix with all real- valued entries, the determinant must be a real
number. On the other hand, the determinant is also equal to the product of the eigenvalues. Thus, if some of
the eigenvalues are complex, the only way that the product

det(A) = λ1λ2...λn (1.138)

can be a real number is if all complex eigenvalues have a conjugate pair. For example, if λn and λn+1 are
complex conjugates, then we have

λnλn+1 = (λr
n + jλi

n)∗ (λr
n− jλi

n) = [λr
n]

2 +
[
λ

i
n
]2

(1.139)
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The last expression after the equal sign is a real number. We can also conclude that if a matrix has any
complex entries, then the eigenvalues and eigenvectors are not necessarily complex conjugates.

To diagonalize A and B, we define a matrix corresponding to the right-eigenvectors that are computed
from equation 1.134.

W = [φ1φ2...φ2n] (1.140)

We can also define a matrix corresponding to the left-eigenvectors from equation 1.137.

U = [ψ1ψ2...ψ2n] (1.141)

Representing the solution as w = ∑
2n
i=1 ziφi, and the loading as,

g(t) =
[

f (t)
0

]
(1.142)

we have13

−αizi(t)+βiżi(t) = ψ
†
i g(t) (1.143)

where αi = ψ
†
i Aφi and βi = ψ

†
i Bφi. When modes are mass normalized, βi = 1 and αi = λi. We note that the

† symbol represents a conjugate transpose, and not just a transpose. This is a complex-valued uncoupled
scalar equation for each degree of freedom in the system, which can be integrated in time. We note that
this is a first order system in time, rather than second order, and thus different methods are required for the
numerical integration than are used for real-valued modal superposition. Superposition must be performed
on the linearized system, as we have no general solution of the original second order system.

Time Domain Superposition

Equation 1.143 can be integrated numerically, using first-order time integrators. However, another approach
is to use the analytical solution.

zi(t) =
∫ t

0
ψ
∗
i g(τ)e−λi(t−τ)dτ (1.144)

Finally, given the solution for each zi(t), we compute w = ∑
2n
i=1 ziφi, and extract the solution u(t) from the

upper half of w(t). We note that in the time domain, the final solution w(t) must be real-valued, even though
both φi and zi are, in general complex. It is easy to show that this is the case. First, as noted earlier, we
recall that the eigenvectors φi come in complex conjugate pairs. Equation 1.143 implies that zi also comes
in conjugate pairs. We note that

w =
2n

∑
i=1

ziφi =
n

∑
i=1

[
ziφi + z̄iφ̄i

]
(1.145)

Noting that ziφi + z̄iφ̄i is a real number, we see that the total summation is also a real number.

Frequency Domain Superposition

For the frequency domain solution, we assume a time-harmonic loading and response.

g(t) = g0eiωext (1.146)

zi(t) = zieiωext (1.147)

(1.148)
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where ωex is the frequency of the external excitation, and g0 is a spatial vector of loadings at that frequency.
Substituting these relations into equation 1.143, we obtain the equations for complex modal frequency re-
sponse

[−αi + iωβi]zi = ψ
†
i g0 (1.149)

This can also be written as,

zi =
ψ

†
i g0

−αi + iωβi
(1.150)

We note that the denominator will go to zero if αi = iωβi, as is expected, in the case of resonance. A standard
approach18 of stabilizing the solution near resonances is to add a small amount of modal damping. In state
space, this corresponds to a adding a real-valued term in the denominator of equation 1.150. Thus, when
αi = iωβi this additional term would prevent a singular response. This additional real term takes the form

zi =
ψ

†
i g0

γi−αi + iωβi
(1.151)

where γi is the modal damping, and is a real number.

As before, the solution of the displacement degrees of freedom is a superposition of modal solutions.

w(ω) =
2n

∑
i=1

zi(ω)φi (1.152)

=
2n

∑
i=1

φiψ
†
i g0

γi−αi + iωβi
(1.153)

1.12.2 Theory for modal superposition with sa eigen

In the case of the sa eigen solution case, the eigenvalue problem is solved in a reduced space. Recalling
equation 1.131, and the transformation u = T û, we can transform equation 1.131 into a reduced space as

m̂ ¨̂u+ ĉ ˙̂u+ k̂û = f̂ (1.154)

where m̂ = T T MT , ĉ = T TCT , k̂ = T T KT , and f̂ = T T f . We note that the superscriptˆis used from here on
to denote the reduced space. If we then define

q̂ =

[
û
˙̂u

]
(1.155)

As was done for the full system for the QEVP method, we project this into the first order system10.

Âq̂− B̂ ˆ̇q = ˆg(t) (1.156)

where

Â =

[
0 I
−k̂ −ĉ

]
(1.157)

10 also known as a state space solution
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B̂ =

[
I 0
0 m̂

]
(1.158)

ĝ =

[
0
− f̂

]
(1.159)

Assuming a solution of the form q̂ = φ̂eλt , we arrive at the eigenvalue problem

Âφ̂ = λB̂φ̂ (1.160)

where we emphasize that φ̂ is in the state-space form of the reduced problem. This eigenvalue problem is
solved with the DGGEV algorithm from LAPACK.

Once the eigenvalue problem 1.160 is solved, methods of the previous section can be applied for solution
of the scalar modal equations of the linearized system and projection back to the reduced space and finally
to physical space.

We transform equation 1.156 into the frequency domain.

Âq̂− iωexB̂q̂ = ĝ(ω) (1.161)

where ωex is the frequency of the external excitation. We assume that the solution can be represented as
q̂ = ∑

2n
i=1 ẑiφ̂i. Substituting this into equation 1.161, and premultiplying by the left eigenvectors ψ̂i, we

obtain
α̂iẑi− iβ̂iωexzi = ψ̂i

†ĝ (1.162)

where α̂i = ψ̂i
†Âφ̂i and β̂i = ψ̂i

†B̂φ̂i. This scalar equation, 1.162 can be solved for ẑi. The solution in reduced
space, q̂ can be obtained from q̂ = ∑

2n
i=1 ẑiφ̂i. Given q̂, û can be extracted from the upper half of q̂, as per

equation 1.155. Finally, once û is known, the original solution u can be computed from the relation u = T û.

1.12.3 Discussion of Eigenvectors and Superposition

There are several important points to consider for the eigenvectors of this problem.

• The left and the right eigenvectors of the linearized system diagonalize the characteristic matrices
A and B. However, the eigenvectors do not diagonalize the matrices of the original second order
equation, 1.131. This means that the modal equations are coupled in the second order system, and
most simplifications for superposition are available only on the linearized, first order system.

• The left eigenvectors can be computed from the solution of the transposed equation. Thus, for sym-
metric systems, left and right eigenvectors are identical.

• Eigenvectors of the linearized, nonsymmetric systems are often not normalized as expected. In many
cases the eigenvectors are not even completely orthogonal, even when they may be linearly indepen-
dent.
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1.12.4 Notes on Implementation

We now discuss some details regarding the implementation of the superposition algorithm. In particular, we
consider the following questions with regard to the specific linearizations used in the Anasazi and sa eigen
solvers

1. Can the state-space left and/or right eigenvectors be decomposed into a vector in one half and then
that same vector multiplied by the eigenvalue in the other half?

2. Does the nonzero part of the state-space force vector occupy the top or bottom half of the vector, and
does it have a minus sign in front of it?

3. Under what circumstances are there relations between the left and right eigenvectors, such as φle f t =

φright or φle f t = (φright)
†?

The answers to any of these questions depends on the specific linearization of interest. Here we examine
only 2 linearizations, which have been considered earlier, and which will be repeated here for convenience.[

M 0
0 K

]
w = λ

[
0 M

−M −C

]
w (1.163)

[
0 I
−K −C

]
w = λ

[
I 0
0 M

]
w (1.164)

For the first question, we consider the right and left eigenvectors separately. For the right eigenvectors,
a simple substitution reveals that the right eigenvector for equation 1.163 can be decomposed as

w =

[
λu
u

]
(1.165)

whereas the second linearization (equation 1.164) has right eigenvectors that decompose in the opposite
way.

w =

[
u

λu

]
(1.166)

For the left eigenvectors, we write the equations corresponding to the left eigenvectors as[
wT

t wT
b
][ M 0

0 K

]
= λ

[
wT

t wT
b
][ 0 M
−M −C

]
(1.167)

[
wT

t wT
b
][ 0 I
−K −C

]
= λ

[
wT

t wT
b
][ I 0

0 M

]
w (1.168)
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Multiplying out the terms in equation 1.167, we find that

wT
t M = λwT

b M (1.169)

which, for nonsingular M, yields
wt = λwb (1.170)

Thus, for the linearization in equation 1.163, the left eigenvectors can be decomposed in a similar manner
as the right eigenvectors when the mass matrix is nonsingular.

Multiplying out the terms in equation 1.168, we find that

wT
b K = λwT

t (1.171)

Or, for symmetric K,
Kwb = λwt (1.172)

Thus, for the linearization described by equation 1.164, the left eigenvectors cannot be decomposed as the
right eigenvectors were.

When forces are present in the system, we can rewrite equations 1.163 and 1.164 as[
M 0
0 K

]
w−

[
0 M

−M −C

]
ẇ =

[
0
f

]
(1.173)

[
0 I
−K −C

]
w−

[
I 0
0 M

]
ẇ =

[
0
− f

]
(1.174)

Thus, for both linearizations 1.163 and 1.164 the state-space force vector has a zero top half, and for lin-
earization 1.163 the non-zero bottom half is multiplied by a negative sign. This answers the second question
above.

In order to answer the third question, we first consider the results given in Table 1.1 of.13 In this table,
relationships between the left and right eigenvectors are given for various symmetry relations of M, C, and
K. In particular, property P7 from this table states that if M, K are Hermitian, C =−C† is skew-Hermitian,
and M is positive definite, then if x is a right eigenvector of λ, then x is also a left eigenvector of −λ†. Since
we only consider real-valued matrices, we expect the eigenvalues of the systems of interest to be purely
imaginary, and thus −λ† = λ. Thus, property P7 simply states that the left and right eigenvectors of λ are
the same. The results in this table define the left and right eigenvectors as follows

λ
2Mu+λCu+Ku = 0 (1.175)

w†
λ

2M+w†
λC+w†K = 0 (1.176)

for right and left eigenvectors u and w, respectively. By taking the conjugate transpose of equation 1.175,
and noting that C =−C† and −λ†, we obtain

u†
λ

2M+u†
λC+u†K = 0 (1.177)
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from which the result P7 from Table 1.1 in13 is obtained.

We note that the results from Table 1.113 are with respect to the quadratic eigenvalue problem, rather
than the linearized versions. Since equations 1.175 and 1.176 could be linearized in a number of ways,
we would expect the conclusions to change when we go to the linearized problem. For example, we again
consider the case when M, K are Hermitian, C = −C† is skew-Hermitian, and M is positive definite. With
these conditions on M, K, and C, we consider the linearizations given by equations 1.163 and 1.164, which
can be written concisely as

Au = λBu (1.178)

In the case of equation 1.163, we have that A is symmetric, whereas B is skew-symmetric. In the case of
equation 1.164, we have that A is nonsymmetric, and B is symmetric. If we take the conjugate transpose of
equation 1.178, we have the corresponding equation for the left eigenvectors

u†A† = u†
λ

†B† (1.179)

For linearization 1.163, we have A† = A, B† =−B, and λ† =−λ. This gives

u†A = u†
λB (1.180)

which implies that the left and right eigenvectors of linearization 1.163 coincide.

In the case of equation 1.164, we have that A is nonsymmetric and B is symmetric. Thus, when we take
the conjugate of equation 1.178, we have

u†A† = u†
λ

†B† (1.181)

which, from symmetry conditions, reduces to

u†A† =−λu†B (1.182)

Thus, since A is nonsymmetric, no relation can be deduced between the left and right eigenvectors.

Similar conclusions can be drawn about a slightly different version of equation 1.163. If we multiply
the lower equation by −1, we obtain [

M 0
0 −K

]
w = λ

[
0 M

M C

]
w (1.183)

or simply Aw = λBw. Since C =−C†, the matrix B is nonsymmetric. Then, taking conjugate transposes of
both sides of equation 1.183, we see that we cannot draw conclusions about relations between the left and
right eigenvectors. This is the same problem seen in equation 1.182.

1.12.5 Complex Eigenvector Orthogonalization

When the eigenvalues of a system are redundant, the eigenvectors are not fully defined, but can be arbitrary
linear combinations. Some solvers, such as DGGEV don’t guarantee orthogonality of these vectors. If such
orthogonalization is required, the procedure in Figure 5 may be followed to orthogonalize two eigenvectors
with a common eigen value.
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Given two modes with a common eigenvalue, λ, and with left and right
eigenvectors, ψi and φ j, we orthogonalize with respect to a matrix B.

ψ
†
1Bφ1 = β11 (1.184)

ψ
†
1Bφ2 = β12 (1.185)

ψ
†
2Bφ1 = β21 (1.186)

We modify ψ2 and φ2 to ensure that β12 = β21 = 0. Let ψ̂ be the corrected
eigenvector.

ψ̂2 = ψ2− εψ1

We require that ψ̂
†
2Bφ1 = 0. Then,

0 = ψ̂
†
2Bφ1 (1.187)

= (ψ2− εψ1)
†Bφ1 (1.188)

= β21− εβ11 (1.189)

Thus,

ψ̂2 = ψ2−
β21

β11
ψ1 (1.190)

For the right eigenvector,

φ̂2 = φ2−
β12

β11
φ1 (1.191)

Figure 5. Complex EigenVector orthogonalization
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1.13 Component Mode Synthesis

Component mode synthesis in Sierra/SD follows the Craig-Bampton method. In this method the model is
reduced using fixed interface modes and constraint modes. The method is outlined in some detail in Craig’s
book, (Chapter 19 of 11). It is summarized below. Note that in Sierra/SD we do not permit any flexibility in
the interface boundary options. Only fixed interface modes are supported.

CMS is typically applied to eigenvalue analysis, but it may be used in other solution methods as well.
Here we describe only the eigen analysis application. Within Sierra/SD only a subset of the standard CMS
method is available. Sierra/SD may reduce an entire model to a set of interface degrees of freedom with
the corresponding system matrices and transfer matrices. Sierra/SD may also read in a reduced system for
solution within its framework.

CMS by these methods is always a linear model, with support for linear elasticity only. The reduction is
based on an eigen reduction and linear superposition.

1.13.1 Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degrees of freedom and generalized degrees
of freedom associated with internal modes of vibration. Consider the general eigenvalue problem, with the
system matrices partitioned into interface degrees of freedom, C, and the complement, V .

([
Kvv Kvc

Kcv Kcc

]
−λ

[
Mvv Mvc

Mcv Mcc

])[
uv

uc

]
= 0 (1.192)

Within Sierra/SD we consider only the cases where Kvv is nonsingular. For the Craig-Bampton method this
implies that clamping the interface degrees of freedom removes all zero energy modes from the structure.

The Craig-Bampton method reduces the physical degrees of freedom, u, to generalized coordinates, p,
using a set of preselected component modes, Ψ.

u = Ψp (1.193)

The component modes, Ψ = [Φ,ψ], are the eigen-modes Φ, the fixed interface problem,

KvvΦ = MvvΦΛvv

and the constraint modes ψ. We retain only a (user specified) subset of the modes in the fixed interface
problem. Additionally the constraint modes, ψ, are the static condensation of the problem. Each column of
ψ is the solution of the static problem where one interface degree of freedom has unit displacement, and all
other interface degrees of freedom are fixed. As shown in Craig,

ψ =−K−1
vv Kvc (1.194)

In the fixed interface eigenvalue problem homogeneous Dirichlet boundary conditions are imposed on
the interface, i.e. Φc = 0 .

Note that since we require that Kvv be positive definite, all these solutions are well defined. The matrix
need be factored only once for all the modes.
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Reduced System

As shown in Craig, the reduced system matrices can be written as follows.

µ =

[
µkk µkc
µck µcc

]
(1.195)

and,

κ =

[
κkk κkc
κck κcc

]
(1.196)

where,

µkk = Ikk

µkc = µT
ck = φ

T (Mvvψ+Mvc) (1.197)

= φ
T Mvvψ+(Mcvφ)T

µcc = ψ
T (Mvvψ+Mvc)+Mcvψ+Mcc

= ψ
T Mvvψ+(Mcvψ)T +Mcvψ+Mcc

and,

κkk = Λkk

κkc = κck = 0 (1.198)

κcc = Kcc−KcvK−1
vv Kvc

= Kcc +Kcvψ

Note that the coupling between the modal and interface portion of the system matrix occurs only in the mass
matrix. Also if Craig’s book is not at hand, these equations come from expanding

µ =

[
Φ ψ

0 I

]T

M
[

Φ ψ

0 I

]
, and κ =

[
Φ ψ

0 I

]T

K
[

Φ ψ

0 I

]
. (1.199)

And furthermore the Craig-Bampton modes satisfy an important variational principle.

Parallelization Issues

The discussion above applies simply for direct solvers for which a system matrix is generated. Parallelization
issues are straightforward, and cover 3 main areas 1) computation of fixed interface modes, 2) computation
of constraint modes, and 3) matrix vector products.

1. Fixed Interface Modes. Since the process of computation of the eigensystem is independent of the
particular solver, there are no parallelization issues with respect to the eigenvalue problem. It is easily
shown that parallel solvers result in the same eigen pairs as serial solvers. There is no reason to expect
that any finite precision issues would be more important here than in other modal based solutions.
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2. Constraint Modes. The constraint modes are different, in that we do not currently have a capability
to compute enforced displacement in parallel. Recall that the constraint mode is the displacement on
space “V” that is computed when a unit displacement is applied to a single degree of freedom on the
interface. The serial equations are as follows.[

Kvv Kvc

Kcv Kcc

][
uv

uc

]
=

[
0
R

]
(1.200)

Equation 1.194 uses the first of these only to solve for uv = ψ. For a domain decomposition problem,
the system matrices are written differently. We examine a two subdomain problem for clarity.

K1vv K1vc 0 0 CT
1v

K1cv K1cc 0 0 CT
1c

0 0 K2vv K2vc CT
2v

0 0 K2cv K2cc CT
2c

C1v C1c C2v C2c 0




u1v

u1c

u2v

u2c

µ

=


0
0
0
0
R

 (1.201)

We extract only the first and third rows to arrive at,

[
K1vv 0 CT

1v
0 K2vv CT

2v

] u1v

u2v

µ

=

[
f1
f2

]
(1.202)

Here fi = Kivcuic. This system is the standard system of equations that is solved by the domain
decomposition solver. The RHS is just the sum of the individual subdomain terms.

3. Matrix Vector Products. There are two primary issues involved in the matrix vector products com-
puted in parallel. First, there is the issue of duplication of some nodal quantities on the subdomain
interfaces. Second, there is the issue of multipoint constraint handling.

The products required in computing the reduced matrices of equations 1.195 through 1.198 are all
of the form, aT Bc, where a and c are vectors and B is a matrix. These are equivalent to element
by element summations like those used in computing the total energy. Thus, the quantities must be
summed on the interface. There is no need to divide by the number of shared interface degrees of
freedom.

The issue of multipoint constraints is a little trickier. The system is now divided using Lagrange
multipliers, χ. Equation 1.192 may be so expressed. Kvv Kvc CT

v
Kcv Kcc CT

c
Cv Cc 0

−λ

 Mvv Mvc 0
Mcv Mcc 0

0 0

 uv

uc

χ

= 0 (1.203)

where χ are the Lagrange multipliers. But, we want these multipliers to be reduced out of the system
(i.e. they should be in the “V” space), so it is useful to reorder the rows and columns of this equation.([

K̃vv K̃vc

K̃cv Kcc

]
−λ

[
M̃vv M̃vc

M̃cv Mcc

])[
ũv

uc

]
= 0 (1.204)
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where,

K̃vv =

[
Kvv CT

v
Cv 0

]
,

K̃vc =

[
Kvc

CT
c

]
,

M̃vv =

[
Mvv 0

0 0

]
and,

ũv =

[
uv

χ

]

The matrix products are readily computed.

M̃vvũv = Mvvuv

M̃cvũv = Mcvuv

K̃cvũv = Kcvuv +CT
c χ

Thus, all of the mass products are simple – they do not require any special Lagrange multiplier treat-
ment, but the stiffness product may require some such contribution. Note that if Cc is zero (as occurs
if there is no constraint tied to the superelement interface) then the stiffness terms are likewise un-
changed.

4. Reduced transient problems and the inertia tensor. Craig-Bampton methods are often applied to
the differential equation Ku+Mü = f Ideally the problem has a solution of the form u(t) = Ψq(t).
These solutions can usually be computed from the reduced problem κq+µq̈ = ΨT f . For a discretiza-
tion of a floating structure, with rigid body modes R such that KR = 0, the solution satisfies the
consistency condition RT Mü = RT f .

One way to impose the consistency condition uses the inertia matrix Ivv = ΨT R. Suppose that R =
ΨS+E has a solution, and the error E is negligible. We use the solution minimizing the norm of the
error, E, and characterized by ΨT E = 0. If Ψ has full rank, then S = (ΨT Ψ)−1Ivv. Then the reduced
consistency condition is just ST µq̈ = RT f . It is worthwhile to check that Ψ is full rank and that κ and
µ do not have common null spaces.

5. Accuracy Issues. The accuracy of the null space is determined by the sum of two large quantities
(see equation 1.198). With iterative solvers, this may not be determined accurately enough to ensure
stability of subsequent time history integration. Even unconditionally stable integration schemes like
the trapezoidal Newmark Beta methods can become unstable if the stiffness matrix is indefinite.

Our experience has shown that inaccurate solves lead to corruption of the zero energy modes with
little impact on the remaining elastic modes. Thus, it seems reasonable to eliminate the error in a
post processing step. Two methods are used. The simpler method removes negative modes from
the reduced matrix without affecting the eigenvector basis of the matrix. However, if the eigenvec-
tors can be accurately determined using geometric means, then a better approach uses these known
eigenvectors to correct both the eigenvalues and eigenvectors of the reduced matrix.

To correct eigenvalues alone, we use the following algorithm, which is also detailed in section 3.29.
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(a) We extract the interface portion of the reduced system matrix, κcc. Note that the portion of the
matrix associated with generalized degrees of freedom (i.e. the fixed interface modes) should be
positive definite.

(b) We perform an eigen analysis of this matrix.

κcc =V ∆V T

where Vji is the eigenvector, and ∆i is the eigenvalue of mode i.

(c) We determine a corrected matrix,

κ̃cc = κcc−
negativemodes

∑
j

Vj∆ jV T
j

To correct both eigenvalues and eigenvectors of the corrupted null space, the algorithm is a little more
involved. Details of the algorithm are presented in Figure 6. Most of the operations in the algorithm
operate on matrices of order 12 or smaller, so the computational cost is fairly minimal. The method
does require very accurate determination of the zero energy modes.

1.13.2 CBR Sensitivity Analysis

Sierra/SD may compute the sensitivity of the reduced mass and stiffness matrices to design variables. Equa-
tion 1.199 may be summarized as a space transformation.

κ = T T KT (1.205)

where T is a transformation matrix. Sensitivity of the matrix to variations in a parameter may be obtained
by differentiating this equation. There are several approaches to that operation.

Constant Vector The transformation matrix T , is treated as a constant. Thus, the original model and its
derivative are transformed into the modal space of the original structure. If there are sufficient modes
to span the space, this operation is exact. We designate To as the transformation matrix for that original
modal space, and use forward differences to write the derivative.

dκ

d p
≈ T T

o (K(p+∆p)−K(p))To

∆p
(1.206)

In the limit as ∆p approaches zero, this should approach the exact solution provided that To spans the
space.

However, practically we truncate the modal space spanned by To. In many real world cases, that
truncation is unable to accurately represent the derivatives.

Finite Difference In this approach, we recompute the entire model, including the transformation matrix, at
both the nominal and perturbed state. Thus, K1 = K(p+∆p) and T1 = T (p+∆p). Using forward
differences,

dκ

d p
≈ T T

1 K(p+∆p)T1−T T
o K(p)To

∆p
(1.207)
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1. Determine rigid body modes, R, of the interface. This is done geometrically.
These are normalized so that RT R = I. Typically there are 6 such vectors.

2. Let, A = RT κccR.

3. Compute a error vector, U = κccR−RA. Note that RTU = 0

4. Perform a QR factorization of the error vector. U = SB. Matrix S has orthonor-
mal columns.

5. Define Q = [R S]

6. Compute the norm of the matrix composed of A and B.

µ =

∥∥∥∥[ A
B

]∥∥∥∥
7. Compute the eigenspectrum of A.

(A−λI)φa = 0

8. Compute G = µ2I−λ2.

9. W = φa
√

GφT
a

10. D =−BW−1AW−1BT

11. define,

H =

(
A BT

B D

)
note that ||H||= µ.

12. Compute the correction,
κ̃cc = κcc−QHQT

Figure 6. Eigenvalue and Eigenvector corrections of Craig-Bampton
reduced models
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The finite difference method accurately represents the state at both the nominal and perturbed states.
In the limit as ∆p approaches zero, the method converges to the true solution.

However, problems will be encountered if there are closely spaced (or repeated) modes.19, 20 Consider
the reduced matrices, which have both physical and generalized degrees of freedom. If a closely
spaced mode changes sort order in the matrix, the derivative is meaningless. With repeated modes,
the issue is even more difficult as the eigenvectors of repeated modes may be linearly combined.
Also, any eigenvector has an arbitrary sign. To help diagnose these problems, we output the mass
cross orthogonality matrix.

Ai j = φ
T
j Mφi (1.208)

Product Rule We usually consider a finite difference method to be something of a truth solution. However,
in the case of CB reduction, the changes in eigenvectors make the method complicated. Another
approach would be to completely differentiate equation 1.205 using the product rule.

dκ

d p
=

dT T

d p
KT +T T dK

d p
T +T T K

dT
d p

(1.209)

Several means21, 22, 23 are available to determine the derivatives of the fixed interface modes, φ, and
constraint modes, ψ, which are the components of the transformation matrix. This approach blends
the best features of both previous methods, but is more complex to develop.

This method is currently unimplemented.

1.14 Eigen Sensitivity Analysis

Within Sierra/SD semi-analytic sensitivities may be computed for eigenvalues and eigenvectors. A rudimen-
tary capability for sensitivity to linear transient response is also available, but has not found much practical
value because the cost of the analysis is not significantly better than the cost of computing the response
using finite differences. For details of the transient analysis formulation, see Alvin’s paper, 24.

For eigenvalue sensitivity, we begin with linear eigenvalue equation.

(K−λM)φ = 0 (1.210)

The equation is differentiated with respect to a sensitivity parameter, p, and we consider the solution for a
single eigen pair.

(dK−dλiM−λidM)φi +(K−λiM)dφi = 0 (1.211)

φ
T
i (dK−dλiM−λdM)φi = 0 (1.212)

(1.213)

where we use the fact that φT
i (K−λiM) is zero. We note that φT Mφ is the identity to solve for the sensitivity.

dλi = φ
T
i dKφi−λiφ

T
i dMφi (1.214)

The method is “semi-analytic” in that the matrices dK and dM are found by finite differences but then
are applied to the analytic expression above. Because there are no linear solves required, the solution is
straightforward and accurate.

The algorithm used for the solution of eigenvalue sensitivity is as follows.
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1. Perform nominal eigenvalue solution.

2. Loop through parameters P, and modify as needed.

3. On an element by element basis compute,

κ = (K +dK)φ

µ = (M+dM)φ

4. compute the sensitivity, dλ = φT κ−λφT µ.

This element by element method conserves memory and is efficient. It has been implemented successfully
for all parallel solvers. It has not been implemented for the sparsepak solver when MPCs are included
in the model. The transformations required for multipoint constraints complicate the element by element
calculation.

Eigenvector sensitivity is more involved, and several approaches can be used. Nelson’s method has been
applied for years (see 22). In this approach, the eigenvector sensitivity may be written,

(K−λiM)dφi = fi (1.215)

where,
fi =−(dK−λidM−dλiM) (1.216)

Nelson’s method requires one linear solve per eigenvector sensitivity. It also suffers from singularity issues
with redundant modes and from accuracy limitations when only part of the modes are extracted. Other
methods (such as Fox 21) can also be employed.

To obtain the best iterative performance, we consistently apply a preconditioned conjugate gradient
algorithm (PCG) to solve,

(K−λiM)wi = fi− (K−λiM)Φci (1.217)

Because this operator is indefinite, we redefine the problem as,

(ΨT (K−λiM)Ψ)xi = ψ
T ( fi− (K−λiM)Φci) (1.218)

where wi = Ψxi. Now the operator (ΨT (K−λiM)Ψ) is positive definite as long as mode i and all modes
below mode i are contained in Φ.

Sensitivity of linear transient dynamics solutions was performed, but not found very useful. For details
on sensitivity on the reduction of superelements see section 1.13.2.

1.15 A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for a posteriori error estimation of eigen
analysis. The first is an explicit error estimator,25,26 and the second is a quantity of interest approach.27 The
explicit approaches are described in chapter 2 of,28 and the quantity of interest approaches are described in
chapter 8 of the same book. However, since we are interested in the eigenvalue problem, the methodologies
are somewhat different than the approaches described in,28 though there are many similarities. Both the
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explicit and the quantity of interest approaches have the same goal - to use the computed solution to compute
upper and lower bounds on the discretization error for the eigenvalues and eigenvectors. A drawback to the
explicit approach is that unknown constants are present in the bounds, making final determination of the
error more difficult. Because of this, explicit estimators are more frequently used as element indicators to
drive adaptivity algorithms, rather than as error estimators. The quantity of interest approach avoids the
unknown constants, but is more work in terms of implementation.

1.15.1 Preliminaries

We seek a posteriori bounds on the error of the finite element solution of the eigenvalue problem for elasticity

−ρλu = (Λ+µ)∇(∇ ·u)+µ∇
2u = ∇ ·σ(u) (1.219)

or
A1(u) =−λA2(u) (1.220)

where where A1(u) and A2(u) are the partial differential operators implied by equation 1.219, λ and u are the
unknown eigenvector and eigenvalue, and Λ and µ are the Lamé elasticity constants. We note that the right
hand side of equation 1.219 can be written either in terms of displacement, as in the first representation,
or in terms of stress, as in the second representation of the right hand side of the equation. The weak
formulation of equation 1.219 is constructed by multiplying by a test function, and integrating by parts, with
homogeneous boundary conditions. This leads to the weak formulation: Find (λ,u) ∈V ×R such that

B(u,v) = λM(u,v) ∀v ∈V (1.221)

where
B(u,v) =

∫
Ω

σ(u)ε(v)dx (1.222)

and
M(u,v) =

∫
Ω

ρuvdx (1.223)

After defining a finite element discretization, this reduces to: Find (uh,λh) such that

Ku = λMu (1.224)

where (uh,λh) are the finite element approximations of the eigenvector and eigenvalue, and K, M, are the
assembled stiffness and mass matrices.

1.15.2 Approach I - explicit error estimator

In Larsen25 and Rannacher,26 two independently derived error estimates are presented for the Laplace equa-
tion. While the two estimates differ slightly, both incorporate an unknown constant, C, an element diameter
term, he, and an element residual function, ρ̄. In what follows we extend these estimates to the elastic-
ity problem. The following two error estimates are given in25 and26 respectively. In what follows we use
Larsen’s results (equation 1.225) exclusively. 11

11Equation 1.225 applies to elements with linear shape functions. The more general expression may be found in equation 1.275
or the reference.
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|λ−λh| ≤ cλCe,0

(
Ne

∑
e=1

h4
e ρ̄(uh,λh)

2

) 1
2

(1.225)

|λ−λh| ≤C2

Ne

∑
e=1

h2
e ρ̄(uh,λh)

2 (1.226)

where he is the element diameter, and

ρ̄(uh,λh)
2 =

∫
Ωe

(
|A1uh +λhA2uh|+R f lux

)2 dΩe (1.227)

The first term on the right hand side is the interior element residual, which is the differential stiffness operator
A1, defined in equation 1.220, applied to the computed element displacement combined with the computed
eigenvalue times the differential mass operator A2, also defined in equation 1.220, applied to the computed
element displacement. This term is computed by representing the eigenvector as a summation

uh(x) =
N

∑
i=1

aiNi(x) (1.228)

where ai is the ith entry in the eigenvector, and Ni(x) is the ith shape function, and then simply applying the
gradient and divergence operators from equation 1.219 to the summation in equation 1.228.

We note that the quantity A1uh + λhA2uh is expressed in the strong form, and thus is not the same as
Kuh−λhMuh, though both expressions are on the element level. The difference can be seen by observing
the first term A1uh

A1uh = ∇ ·σ(uh) (1.229)

That is, A1uh is the divergence of the stress (which is computed from the finite element displacement uh).
This is not the same as Kuh, since Kuh is in the weak form, and has been evaluated by integrating over the
element against a test function. For example, if we consider linear elements, we have A1uh = ∇ ·σ(uh) = 0,
since the stress is constant over the element. On the other hand, Kuh is not zero.

The second term is the boundary or flux residual.

R f lux = (hevol(e))−1/2
[∫

Γe

R2dΓe

]1/2

(1.230)

It has two different integrands depending on whether the face in question lies on a part of the boundary
where traction or pressure boundary conditions are applied, or whether it is an interior face. When it lies on
a boundary loaded face,

R = g−σi jn j (1.231)

where g is the applied traction or pressure load. Note that g = 0 for eigen problems. When the face is an
interior face,

R = [σi jn j] = σ
a
i jn j−σ

b
i jn j (1.232)

where σa and σb are the stress tensors in the two adjacent elements, element ’a’ and element ’b’. Note that
because the integrand is squared, computing the flux residual in parallel requires parallel communication.
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We note the intuitive nature of the upper bound in equation 1.225. As the element size he tends to zero,
the right hand sides of the estimate goes to zero, due to the multiplication by the element sizes he. Keep in
mind also that the ρ̄ term includes an integral over a volume and that ∑

Ne
e=1 ‖const‖ is a constant.

There are two important issues in applying the results in Larsen’s reference to general elasticity prob-
lems. The first of these is the extension to elasticity. The second is the extension to multiple materials.
These are covered in the following sections.

1.15.3 Extension of Estimators to Elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling the Laplace equation
to the elasticity problem. It addresses issues of both mass and stiffness scaling. A similar development
was provided by Clark Dohrmann. The development herein builds upon Larsen’s development 25, and uses
quantities defined there.

We consider the eigenvalue problem

−µ∆u− (Λ+µ)∇(∇ ·u) =−∇ ·σ(u) = θρu in Ω (1.233)

u = 0 on ∂Ω (1.234)

where the Lamé constants Λ and µ satisfy

Λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

(1.235)

We define also a weak formulation: find (u,θ) ∈ V×R

a(u,v) = θb(u,v), ∀ v ∈ V (1.236)

b(u,u) = 1 (1.237)

where
a(u,v) =

∫
Ω

σ(u) · ε(v)dx (1.238)

and
b(u,v) =

∫
Ω

ρu ·vdx (1.239)

We follow the approach in the paper by M. Larson to derive a posteriori error estimators. We use most of
his notation.

Residual

The definition (3.7) for the residual becomes, on a triangle τ,

R(uh,θh)|τ =
1
√

ρ
|∇ ·σ(uh)+θhρuh|+

√
1

h vol(τ)

∫
∂τ\∂Ω

(
n ·
[

σ(uh)

2
√

ρ

])2

(1.240)
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Note that we have
R(uh,θh)≡ R(uh,θh,ρ,E,ν) (1.241)

and that R satisfies the following scaling properties

R(
uh√

α
,
θh

α
,αρ,E,ν) =

1
α

R(uh,θh,ρ,E,ν) (1.242)

R(uh,αθh,ρ,αE,ν) = αR(uh,θh,ρ,E,ν) (1.243)

Stability estimates

The equation (3.10) becomes

||D2+sv|| ≤Ce,s

√√√√b

((
−1
ρ

∇ ·σ
)1+s/2

(v),
(
−1
ρ

∇ ·σ
)1+s/2

(v)

)
(1.244)

Note that
Λ+µ =

E
2(1+ν)(1−2ν)

,
µ

Λ+µ
= 1−2ν (1.245)

Then, we get

Ce,s = c
ρ(1+s)/2

(Λ+µ)(2+s)/2 (1.246)

Note that we have
Ce,s ≡Ce,s(ρ,E,ν) (1.247)

and that Ce,s satisfies the following scaling properties

Ce,s(αρ,E,ν) = α
(1+s)/2Ce,s(ρ,E,ν) (1.248)

Ce,s(ρ,αE,ν) =
1

α(2+s)/2Ce,s(ρ,E,ν) (1.249)

A posteriori estimates

We make also the assumption (2.6) : there are 0≤ δ < 1 and h0 > 0 such that

max
θi 6∈Θ

∣∣∣∣θh−θ

θi−θ

∣∣∣∣≤ δ , ||QΘuh||2 ≤ δ (1.250)

for all meshes such that maxh(x) ≤ h0. Using p = 1, k = 2, β0 = 0, and β1 = 1, the final estimate on the
eigenvalues becomes

θh−θ

θ
≤ c

1−δ
Ce,0
√

ρ||h2R(uh,θh)|| (1.251)

The estimates on the error in the discrete eigenvector are now

√
b(eΘ,eΘ) ≤

c
1−δ

Ce,0(1+max
θi 6∈Θ

θ

|θi−θ|
)
√

ρ||h2R(uh,θh)|| (1.252)

√
a(eΘ,eΘ) ≤

c
√

ρ

1−δ
(Cc +Ce,0 max

θi 6∈Θ

θθ
1/2
i

|θi−θ|
hmax)||hR(uh,θh)|| (1.253)
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where Cc is related to the coercivity constant

||Dv|| ≤Cc
√

a(v,v) (1.254)

In Ciarlet’s book (“The finite element method for elliptic problems”), the coercivity constant is given

a(v,v)≥ 2µ||Dv|| ⇒ Cc =
c√
2µ

(1.255)

1.15.4 Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit error estimator to multiple materials.
We don’t believe that there are significant issues, and present the approach used in Sierra/SD here. There
are two main constraints from the explicit error estimator formulations that must be maintained.

1. The eigenvectors, uh must be unit normalized, i.e.‖uh‖= 1. This is important for mass scaling so that
a change of units does not affect the fractional error in the solution. It is an essential part of both
Larsen’s development and Ulrich’s extension to elasticity. See equation 1.237.

2. The extensions must maintain finite element consistency so that as h goes to zero there is no inconsis-
tency.

The second of these can be evaluated by examination of the residuals (as in equation 1.227). Both the
internal and the flux terms of the residuals are unaffected by most scaling operations provided that materials
remain constant within an element. Note that the evaluation of the flux jump (equation 1.230) is unaffected
by multiple materials since the normal component of stress discontinuity should go to zero even for disparate
materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors computed in Sierra/SD
are mass normalized, i.e. uT Mu = I. We renormalize for error estimation in the following manner.

1. A unitless mass matrix, M̄ is computed using unit density material.

2. We compute a scale factor
mα = uT M̄u (1.256)

3. The eigenvectors are renormalized as u← u/
√

mα.

In addition to eigenvector renormalization, we move the evaluation of the scaling constant, Ce,s, from
equation 1.246 inside the summation of equation 1.225. This maintains the proper scaling with respect
the element stiffness terms.

A recent paper by Bernardi and Verfurth29 has shown that explicit estimators can be used in the presence
of multiple materials. For static Laplace equation, he derived multiplicative constants for the interior and
flux contributions that make the multiplicative constant in front of the estimator independent of jumps in
material properties. In what follows we extend this approach to the eigenvalue problem, and to elasticity
problems. We will follow the same approach as in that paper, i.e. first constructing the lower bound, and
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then the upper bound. The proper choices for the coefficients will result from the upper and lower bound
estimates.

First, we note a commonly used form for explicit estimators.

‖uh−u‖α ≤ c∑
K

(
h‖Ri(uh,θh)‖2

L2(K)+
√

h‖ [σn(uh)]

2
‖2

L2(∂K)

) 1
2

(1.257)

where Ri(uh,θh) = |∇ ·σ(uh)+θhρuh|, [σn(uh)] is the jump in stress across the element boundary ∂K, and
‖ ·‖α is the energy norm. This estimator can be shown to give both an upper and a lower bound on the error.
As written, this estimator does not fully account for discontinuous material properties, since the constant c
in front of the estimator would depend on the jumps in material properties.

We note that the estimator, written in this form, is essentially the same as the one proposed by Larson.
For example, by writing the boundary term as an integral of a constant function, scaled by the volume of the
element, then we can write equation 1.257 in the form

‖uh−u‖α ≤ c∑
K

(
‖hRi(uh,θh)+

√
h

Vol(K)

[σn(uh)]

2
‖2

L2(K)

) 1
2

(1.258)

which is the same expression given by Larson in the case of linear elements. We note that this estimator is
in terms of the energy norm, whereas Larson gives his results in terms of the L2 norm. This results in the
difference of one power of h in equation 1.258.

The approach in Bernardi is to replace the estimator in equation 1.257 by

‖uh−u‖α ≤ c∑
K

(
µK

2‖Ri(uh,θh)‖2
L2(K)+µe‖

[σn(uh)]

2
‖2

L2(∂K)

) 1
2

(1.259)

where µK and µe are chosen in such a way that the resulting estimator is both an upper and lower bound on
the error, and the constant c is independent of the jumps in material properties.

Before beginning, we redefine the original PDE as follows

−∇ ·σ
ρ

= θu (1.260)

the corresponding bilinear forms as

a(u,v) =
∫

Ω

1
ρ

σ(u) · ε(v)dx

b(u,v) =
∫

Ω

u ·vdx
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and the corresponding interior residual as

Ri(uh,θh) = |
∇ ·σ(uh)

ρ
+θhuh| (1.261)

By dividing through by ρ, we include the density in the energy norm. This will be important later on when
the coefficients in equation 1.259 are selected.

As in Bernardi, we need the following identities, which follow from equation 1.221

a(u−uh,v) = θb(u,v)−a(uh,v) (1.262)

θb(u,v)−a(uh,v) = ∑
K

∫
K

(
θu+

1
ρ

∇ ·σ(uh)

)
vdx−

∑
e

∫
e

[
1
ρ

σn(uh)

]
·vdτ (1.263)

where the summation ∑e is over all edges (in 2D) or over all faces (in 3D). We also use equations 2.11 in
Bernardi’s paper.

The lower bound will be considered first. We set wK = ΨKRi(uh,θh), where ΨK comes from equation
2.11 in Bernardi’s paper. We will also make use of the following inequality for the bilinear form

a(u,v)K ≤ ‖u‖α‖v‖α (1.264)

≤ αK‖u‖1‖v‖1 (1.265)

where αK = CK
ρK

, and CK is the maximum eigenvalue of the material property matrix, and ρK is the density
of the element.

For the interior part of the residual, we have

‖Ri(uh,θh)‖2
L2(K) ≤ γ

2
1

∫
K

[
1
ρ

∇ ·σ(uh)+θhuh

]
·wKdx

= −γ
2
1

∫
K

1
ρ

σ(uh) · ε(wK)dx+ γ
2
1

∫
K

θhuh ·wK

= γ
2
1a(u−uh,wK)K− γ

2
1θ

∫
K

u ·wKdx+ γ
2
1θh

∫
K

uh ·wKdx

≤ γ
2
1

[
‖u−uh‖α(K)γ2h−1

K α
1
2
K +‖θhuh−uθ‖L2(K)

]
× ‖Ri(uh,θh)‖L2(K) (1.266)

where we note that, since ΨK is a bubble function, the boundary terms vanish in the integration by parts on
the second line of the above equation.



UNCLASSIFIED- UNLIMITED RELEASE 73

This implies that

‖Ri(uh,θh)‖α(K) ≤ γ
2
1

[
‖u−uh‖α(K)γ2h−1

K α
1
2
K +‖θhuh−uθ‖L2(K)

]

or, multiplying through by µK ,

µK‖Ri(uh,θh)‖α(K) ≤ γ
2
1

[
‖u−uh‖α(K)µKγ2h−1

K α
1
2
K +µK‖θhuh−uθ‖L2(K)

]

Now is where a critical assumption comes into play. We assume here that the computed eigenvalue θh
and eigenvector uh are closer to the exact solution θ and u than any other eigenvalue/eigenvector pair. This
assumption is also made by Larson, in equation 2.6. With this assumption, the term ‖θhuh−uθ‖L2(K) is a
higher order term compared with ‖u−uh‖α(K), and thus will decay to zero at a faster rate. This was also
shown in the paper by Duran.30 Thus, we select µK based on the term ‖u− uh‖L2(K) only. If we select

µK = hKα
− 1

2
K then the right hand side is independent of the jumps in material properties.

For the boundary term, we first choose we = Ψe

[
1
ρ

σn(uh)
]
, where again Ψe comes from equation 2.11

in Bernardi. Then, using equation 1.266 we have

‖
[

1
ρ

σn(uh)

]
‖2

L2(e) ≤ γ
2
3

∫
e

[
1
ρ

σn(uh)

]
·wedτ

= γ
2
3 ∑

K

∫
K

(
∇ · 1

ρ
σ(uh)+θhuh

)
·we− γ

2
3 ∑

K
a(u−uh,we)

+ γ
2
3 ∑

K

∫
K
(θu−θhuh) ·we

≤ cγ
2
3

(
∑
K

γ5h
1
2
e ‖Ri(uh,θh)‖L2(K)+∑

K
γ4h
− 1

2
e α

1
2
K‖u−uh‖α

+ γ5h
1
2
e ∑

K
‖uθ−uhθh‖L2(K)

)
‖
[

1
ρ

σn(uh)

]
‖L2(e)

≤ cγ
2
3

[
∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α +∑

K
h

1
2
e ‖θhuh−θu‖L2(K)

]

× ‖
[

1
ρ

σn(uh)

]
‖L2(e) (1.267)

where in the above equation, ∑K denotes a summation over elements, but only those elements that border
the edge e. Also, in the previous estimate we collected constants involving γ and combine with the constant
c, where possible.



74

This implies that

µ
1
2
e ‖
[

1
ρ

σn(uh)

]
‖L2(e) ≤ cγ

2
3µ

1
2
e

[
∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α +∑

K
h

1
2
e ‖θhuh−θu‖L2(K)

]

We see that if we choose µe = he max(αK1,αK2)
−1, where subscripts 1 and 2 denotes the two neighboring

elements that contain the edge or face e, then the right hand side (neglecting the higher order term) is
independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that will be needed along the way.

∫
Ω

(
1
ρ

∇ ·σ(uh)+θu
)
· (w−wh) =−a(uh,w−wh)+

∑
e

[
1
ρ

σn(uh)

]
· (w−wh)+

∫
Ω

θu(w−wh)

(1.268)

This implies that

a(uh,w−wh) = ∑
e

[
1
ρ

σn(uh)

]
· (w−wh)

+
∫

Ω

θu · (w−wh)−
∫

Ω

(
1
ρ

∇ ·σ(uh)+θρu
)
· (w−wh) (1.269)

We will use the previous result in the upper bound on the energy norm of the error. Let w = u−uh. Then

‖u−uh‖2
α = a(u−uh,w) = a(u−uh,w−wh) (1.270)
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where the last equality follows from Galerkin orthogonality. Breaking the previous expression into element-
wise quantities, and using equation 1.269, we obtain

‖u−uh‖2
α = ∑

K
a(u−uh,w−wh) (1.271)

= ∑
K

a(u,w−wh)−∑
e

[
1
ρ

σn(uh)

]
· (w−wh)

− ∑
K

∫
K

θu · (w−wh)+∑
K

∫
K

(
∇ · 1

ρ
σ(uh)+θu

)
· (w−wh)

= ∑
K

∫
K

(
∇ · 1

ρ
σ(uh)+θu

)
·w−wh−∑

e

[
1
ρ

σn(uh)

]
· (w−wh)

≤ ∑
K

µK‖∇ ·
1
ρ

σ(uh)+θu‖L2(K)µ
−1
K ‖w−wh‖L2(K)

+ ∑
e

µ
1
2
e ‖
[

1
ρ

σn(uh)

]
‖L2(e)µ

1
2
e ‖w−wh‖L2(e)

≤

[
∑
K

µ2
K‖∇ ·

1
ρ

σ(uh)+θu‖2
L2(K)+∑

e
µe‖
[

1
ρ

σn(uh)

]
‖2

L2(e)

] 1
2

×

[
∑
K

µ−2
K ‖w−wh‖2

L2(K)+∑
e

µ−1
e ‖w−wh‖2

L2(e)

] 1
2

We now use equation 2.16 in Bernardi’s paper, which shows that[
∑
K

µ−2
K ‖w−wh‖2

L2(K)+∑
e

µ−1
e ‖w−wh‖2

L2(e)

] 1
2

≤ c‖w‖α (1.272)

With this result, we have

‖u−uh‖α ≤ c

[
∑
K

µ2
K‖∇ ·

1
ρ

σ(uh)+θρu‖2
L2(K)+∑

e
µe‖
[

1
ρ

σn(uh)

]
‖2

L2(e)

] 1
2

(1.273)

which is the desired upper bound. We note that we would also obtain higher order terms in the above
expression by adding and subtracting terms of the kind

∫
K θhuhdx, but the same argument could be made as

before.

1.15.5 Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the following steps. These steps
have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in section 1.15.4, equation 1.256.
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2. Loop through all elements in the mesh. Compute the surface flux residuals for each face. Share that
residual vector at each surface gauss point with neighboring elements to determine the stress jump
1.232. Integrate over all faces (by summing at surface gauss points) to determine R f lux (eq 1.230).

3. Loop through all elements in the mesh. At each interior gauss point of each element,

(a) Compute the interior residual,
a1 = |A1(uh)+λhA2(uh)|

(b) Compute the integrand,
(a1 +R f lux)

2

Note that R f lux is a constant over the element.

(c) Sum at gauss points to obtain the element contribution,

ρ̄
2 =

∫
Ωe

(a1 +R f lux)
2dΩe

≈
Ngauss

∑
i

wi(a1(xi)+R f lux)
2

4. Compute the global contribution to the error. For elements with linear shape functions, this may be
written,

|λ−λh|
λ

≤ c

(
Ne

∑
e=1

(Ce,0h2
e ρ̄)2

) 1
2

. (1.274)

Where (as shown in section 1.15.3, equation 1.246),

C2
e,0 =

ρ

(Λ+µ)2

and ρ, Λ and µ are the material density and the Lamé constants respectively. The more general
expression for elements of order p is,

|λ−λh|
λ(p+1)/2 ≤ c

(
Ne

∑
e=1

(Ce,p−1h(p+1)
e ρ̄)2

) 1
2

. (1.275)

We note that although the constant, c, in equation 1.274 is not known completely, it is usually es-
timated to be of order 1. The constant depends on the details of the mesh, and in particular on the
minimum angle in the elements.

1.15.6 Approach II - quantity of interest estimator

In,27 an error estimator is derived for the elasticity equation, using the eigenvalues as the quantity of interest.
The estimate is of the form

η
λ

low = −η
2
upp (1.276)

η
λ
upp = −η

2
low (1.277)
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where ηλ

low is a lower bound on λ−λh, and ηλ
upp is an upper bound on λ−λh. Note that both quantities are

necessarily negative,12 since the computed eigenvalues are always larger than the exact ones.

The quantities ηupp and ηlow are computed using the so-called element residual method. This method
involves solving a small linear system on each element to obtain an error representation for that element,
and then the element contributions are accumulated to obtain the total errors. The element residual method
involves solving the following linear system on each element

−B(ΦK ,v) = R(v,0)+
∫

∂K
gγ,Kvds ∀v ∈WK (1.278)

or
Kba = f (1.279)

where a is the vector of coefficients that represent the function ΦK . In other words, ΦK = ∑
Nshapebubble
i=1 aiNi,

where Ni is the ith bubble shape function. The left hand side Kb is the element stiffness matrix, but evaluated
using bubble functions rather than the standard element shape functions. This is necessary since the standard
element stiffness matrix is singular and thus equation 1.279 would otherwise not be solvable. The right hand
side consists of two terms, an interior residual term for the interior of the element, and a stress jump term on
the element boundary. This is similar to the interior and boundary residual terms that were encountered in
the explicit error estimator, though the exact formulas for these terms are somewhat different. The first term
is simply

R(v,0) = B(uh,v)−λhM(uh,v) (1.280)

Equation 1.280 can be most efficiently evaluated using the following method.31 We evaluate the first term
first.

B(uh,v) =
∫

K
BT

bubbleσ(x)dx (1.281)

where BT
bubble is the standard ’B’ matrix, or the matrix of derivatives of the element shape functions, except

that it is using the bubble shape functions rather than the standard shape functions. Note that the result
of equation 1.281 is a vector of length 3xNshapebubble, where Nshapebubble is the number of bubble shape
functions. We note that the routine ForceFromStress in IsoSolid.C already performs the computation needed
for equation 1.281, with the only change being the use of the matrix BT

bubble rather than the standard BT , and
thus this code could be re-used.

The second term can be evaluated in a similar way.

M(uh,v) =
∫

K
uh(x)v(x)dx (1.282)

Note that uh(x) is a known function. This term is also a vector of length 3xNshapebubble. The three entries
corresponding to the ith bubble shape function are as follows

∫
K

u1h(x)φi(x)dx (1.283)∫
K

u2h(x)φi(x)dx (1.284)∫
K

u3h(x)φi(x)dx (1.285)

(1.286)

12for consistent mass only.
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where u1h, u2h, and u3h are the x, y, and z components of uh, and φi is the ith bubble shape function.

The boundary term consists of the following. gγ,K is simply the traction on the element boundary, or

∫
∂K

gγ,Kvds =
∫

∂K
[σi jn j]vds (1.287)

where [σi jn j] denotes the averaged stress on the element faces. For two adjacent elements, element ’a’ and
element ’b’, it is the average of their stress traction vectors.

[σi jn j] =
1
2

(
σ

a
i jn j +σ

b
i jn j

)
(1.288)

Again, the test (shape) function in this case, ’v’ is the bubble function rather than the standard element shape
function. We note that the boundary integral term in equation 1.278 and equation 1.287 is over all faces of
the element in question. Thus, if the implementation of this term proceeds one face at a time, then there will
be a nodal summation step to get the complete right hand side vector corresponding to the boundary integral
term. We could also write this term as

∫
∂K

gγ,Kvds =
N f aces

∑
i=1

∫
∂Ki

gγ,Kvds (1.289)

where ∂Ki is the ith face of element ’K’. Note that the test functions, v become the element shape functions
when restricted to an element. Thus, for a given element bubble shape function φbubble, and a given face, we
can write the previous equation as ∫

∂Ki

gγ,Kφbubbleds (1.290)

Note that gγ,K is a 3-vector, and so for a given bubble shape function, and a given face,
∫

∂Ki
gγ,Kφbubbleds

is also a 3-vector. We then take this 3-vector and project it into the element right hand side. After looping
through all faces and all bubble shape functions, we end up with a vector that is of length 3∗Nshapebubble.

Once the linear systems 1.279 are solved on each element, the upper bound, ηup from equation 1.277
can be computed as follows

ηupp =
√

∑
K

B(ΦK ,ΦK) (1.291)

This equation can also be written as follows. If we represent the function ΦK as a summation of coefficients
multiplied by the bubble shape functions,

ΦK =
Nshapebubble

∑
i=1

aiNi (1.292)

then
ηupp =

√
∑
K

B(ΦK ,ΦK) =
√

∑
K

aT Kba (1.293)

Finally, using equation 1.277, we have an upper bound on the error in the eigenvalue.

A lower bound on the error in the eigenvalue can also be computed. This is described in detail in,27 and
we summarize here.
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First, we define a function χ ∈V , which we will define shortly. Once the function χ is defined, the lower
bound can be computed as follows

ηlow =
|Rp(χ,0)|√

B(χ,χ)
(1.294)

The quantities in both the numerator and denominator can be computed by looping through all elements and
computing the corresponding element-wise quantities (using equation 1.280), and then summing globally.

Summarizing, in order to implement the quantity of interest approach for eigenvalue error estimation,
we have the following steps. These must be carried out for each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix, Kb in equation 1.279, in the same way
that standard element stiffness matrix is constructed, but using the bubble shape functions.

2. Loop over all elements. Construct the right hand side of equation 1.279. This consists of the interior
part, equation 1.280, and the boundary part, equation 1.287.

3. Loop over all elements and solve the linear systems 1.279, to obtain the error functions ΦK .

4. Compute the upper bound on the error in the eigenvalue using equation 1.293.

5. Compute the lower bound on the error in the eigenvalue using equation 1.294.

1.16 Nonlinear Distributed Damping using Modal Masing Formulation

This provides a method for implementing nonlinear distributed damping into a subsystem with a nonlinear
transient solution. This is a method developed to model the nonlinear damping response of a subsystem.
It implements the damping in a nonlinear manner with the use of an internal force term. The damping is
modeled by an Iwan model and distributed to the subsystem by a modal expansion. This method augments
the internal force vector through a modal masing formulation.

1.16.1 Subsystem Distributed Damping Formulation with Iwan Model

Given a system that contains a subsystem exhibiting nonlinear damping behavior, the equation of motion
for the subsystem, denoted by B, can be written in typical finite element form as:

MBüB +CBu̇B +KBuB = FB +FJ
B, (1.295)

where MB, CB, KB are the mass, damping, and stiffness matrices of the subsystem B derived from a low-
load response, uB is the discretized nodal displacements, a superposed dot denotes time differentiation, FB
represents the external forces, and FJ

B is a distribution of internal nonlinear damping forces to be discussed
later.

A modal expansion is used to distribute the damping to the subsystem; therefore, the problem is for-
mulated in modal coordinates. Let B be the matrix whose columns are the eigenvectors of the (MB, KB)
system and define modal coordinates in subsystem body B

uB = BqB, (1.296)
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where qB is a vector of modal coordinates. It is assumed that the eigenvectors are mass normalized. Pre-
multiplying Eq. (1.295), by ΦΦΦ

T
B , yields

[ΦΦΦT
BMBΦΦΦB]q̈B +[ΦΦΦT

BCBΦΦΦB]q̇B +[ΦΦΦT
BKBΦΦΦB]qB = ΦΦΦ

T
BFB +ΦΦΦ

T
BFJ

B, (1.297)

In order to derive a nonlinear distributed damping system, the force term ΦΦΦ
T
BFJ

B is modeled by a four
parameter Iwan model:32, 33

ΦΦΦ
T
BFJ

B = FJ
B =−

∫
∞

0
diag(ρ(φ))[q(t)−βββ(t,φ)]dφ, (1.298)

where ρ is the population density of Jenkins elements of strength φ (not to be confused with the eigenvec-
tors), and β(t,φ) is the current modal displacements of the sliders in the Iwan model.33 This force term is
actually solved in a discretized form with the integration from zero to φmax:33

FJ
B =−

N

∑
m=1

Fm(t)−Fδ(t)+K0q(t), (1.299)

where the integral in Eq. (1.298) is numerically integrated with intervals, ∆φm, such that,

N

∑
m=1

∆φm = φmax, (1.300)

with φm being the midpoint of each interval ∆φm in the numerical integration. The, term, Fm(t) is derived
as:33

Fm(t) =

 R
φ

2+χ
r,m −φ

2+χ

l,m
2+χ

sgn [q(t)−βββ(t)] if ‖ q(t)−βββ(t) ‖= φm

R
φ

1+χ
r,m −φ

1+χ

l,m
1+χ

[q(t)−βββ(t)] if ‖ q(t)−βββ(t) ‖< φm

(1.301)

with φr,m and φl,m being the right and left side of each subinterval, ∆φm, and R and χ are a parameters of the
Iwan model. The term, Fδ(t), is found:33

Fδ(t) =
{

S[q(t)−βββ(t)] if [q(t)−βββ(t)]< φm

Sφmaxsgn[q(t)−βββ(t)] otherwise
(1.302)

where S is an Iwan parameter. The final term, K0q(t) in Eq. (1.299), is an elastic restoring force in the Iwan
model that is included in the Fm(t) term, but also in the overall subsystem stiffness matrix, KB. Therefore,
it needs to be subtracted, so as not to include the elastic force twice. The term K0 is the stiffness of the Iwan
model under small applied loads (where slip is infinitesimal). This is calculated from the Iwan parameters
as

K0 =
Rφ

χ+1
max

χ+1
+S =

Rφ
χ+1
max

χ+1
(1+β) (1.303)

Transferring back to physical degrees of freedom provides the following for the equation of motion:

MBüB +CBu̇B +KBuB = FB +ΦΦΦ
−T
B FJ

B (1.304)

To avoid the possibility of an ill-conditioned and difficult pseudo-inversions, recognize that MBΦΦΦBBB = ΦΦΦ
−T
B ,

yielding:
MBüB +CBu̇B +KBuB = FB +MBΦΦΦBBBFJ

B (1.305)

Given the above EOM, a typical nonlinear analysis can be performed, recognizing that the force term
MBΦΦΦBBBFJ

B is a function of the displacement. However, care must be exercised in the implementation,
as the modal displacement will need to be passed to the Iwan function for updating internal forces.
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1.16.2 Subsystem Distributed Damping with a Linear Damper

It is possible to derive the same basic formulation as above, but for a linear damping. This provides a check
into the formulation as the results should be the same as a model with a modal damping parameter.

The only required change from the above derivation is in the nonlinear internal force term, FJ
B. This

term will need to be appropriate for a viscous damper; thus, a function of the modal velocity. A formulation
can be found as the following:

FJ
B = FJ

Bi =−2ςiωiq̇i, (1.306)

where subscript i represents the mode, ςi is the damping ratio for mode i, ωi is the frequency for mode i, and
α̇ is the modal velocity. Here I am trying to see how many subscripts I can possibly add.

1.16.3 Reduced Model

In order to reduce computational demand, a reduced set of eigenvectors (ΦΦΦR
B) can be calculated for the

subsystem and used in place of the total subsystem eigenvector, ΦΦΦB.

1.16.4 Full System Model

Implementation of the full system with nodal degrees of freedom, u, is accomplished with a typical projec-
tion matrix, P, from the full system to the subsystem.

uB = Pu (1.307)

Thus, the EOM, now becomes

Mü+Cu̇+Ku = F+PTMBΦΦΦ
RRR
BBBFJ

B (1.308)

1.17 Damping of Flexible Modes Only

Here we outline the method used in Sierra/SD to ensure that various damping models do not affect the
rigid body response of a structure. 13. A more detailed explanation of the theory which involves less
restrictive assumptions and describes connections with the present approach can be found in the document
dampFlexMode.tex, which appears in the Sierra/SD documents repository. The sensitivity of this approach
to errors in the K is discussed in filterrbm error.tex.

Consider the standard equilibrium equations given by

Mẍ+Cẋ+Kx = f , (1.309)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x is the response vector, and
f is the applied force vector. Let the columns of the matrix Φr span the rigid body modes of the structure.
That is,

KΦr = 0. (1.310)

13The technique is also known as filtering the rigid body modes, hence the name filterRBM
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Typically there are six rigid body modes (3 translational and 3 rotational), and it is assumed this is the case.
Consider next a proportional damping model in which

C = αK +βM, (1.311)

where α and β are non-negative constants. Since the mass matrix M is nonsingular, we will have CΦr 6= 0
for mass proportional damping when β > 0. Thus, the damping model will dissipate the energy of the rigid
body modes. Some analysts would like to include mass proportional damping, but only have it damp the
flexible modes.

We may express the response vector x as

x = Φrqr +Φ f q f , (1.312)

where qr and q f are vectors of generalized coordinates associated with the rigid body and flexible modes,
respectively. Further,

Φ
T
f MΦr = 0. (1.313)

Substituting (1.312) into (1.309), using (1.310), and setting

CΦr = 0 (1.314)

gives us
M(Φrq̈r +Φ f q̈ f )+CΦ f q̇ f +KΦ f q f = f . (1.315)

Let us assume for now that C and K are symmetric. We then find from (1.310) and (1.314) that

Φ
T
r C = 0, Φ

T
r K = 0, (1.316)

Premultiplying (1.315) by ΦT
r and substitution of (1.313) and (1.316) gives us

Φ
T
r MΦrq̈r = Φ

T
r f . (1.317)

If the rigid body modes are M-orthonormal, i.e. ΦT
r MΦr = I, we then obtain

q̈r = Φ
T
r f . (1.318)

Substituting (1.318) back into (1.315) and using the notation x f = Φ f q f gives us

Mẍ f +Cẋ f +Kx f = (I−MΦrΦ
T
r ) f . (1.319)

From (1.312) we see that the total response is given by

x = Φrqr + x f , (1.320)

where the dynamics associated with qr and x f are governed by (1.318) and (1.319).

Notice that the dynamics for the flexible part of the response, i.e. (1.319), is simply the original equilib-
rium equations in (1.309) with a modified force vector. This modified for vector can be calculated efficiently
as

(I−MΦrΦ
T
r ) f = f −M(Φr(Φ

T
r f )). (1.321)

The rigid body response governed by (1.318) can be numerically integrated using the same scheme as for
the flexible response.
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If f is a known force vector that does not depend on the response, then we do not need to concern
ourselves with stability issues since all we’ve done is modified the force vector in a stable manner. If,
however, the force vector depends on the response, then stability issues could arise. It should be mentioned
though that these potential issues could arise even in our existing capabilities for coupling Sierra/SD to other
simulation codes that do not use the present damping approach.

Usability Question Certain expedient spatial discretizations of floating structures lead to a stiffness matrix
K̃ with the unphysical property K̃Φ 6= 0. We can think of M, C, K̃ and f determining x̃. If, moreover, the
rigid body modes Φ are undamped, we get a solution y. Is y “better” than x̃? A relatively cumbersome
discretization determines K such that

Φ
T
r K = 0, KΦr = 0. (1.322)

In practice K = K̃−VV T the matrices differ by a symmetric low rank perturbation, and VV T is sparse.

Our fundamental tool is
P = I−ΦrΦ

T
r M.

In general neither PT K̃ nor K̃P satisfies equation (2). It turns out that PT K̃ = K̃P if there exists H such that
K̃Φ = MΦH. Using filterrbm is like transforming K̃ to PT K̃P = K +PTVV T P. This has the advantage of
projecting out the rigid body modes from V .

1.18 FSI for Sigma/CFD Sierra/SD Coupling

Coupling algorithms have been developed for coupled Fluid Structure Interactions (FSI) between the fluid
code “Sigma CFD” and Sierra/SD. Sigma CFD provides a high mach number solution for large eddy simula-
tion (LES) of hypersonic vehicles. While most of the documentation is still to be published, some discussion
of Sigma can be found in references 34, 35 and 36. The coupling interactions (both one-way and two-way)
are described below.

1.18.1 One Way FSI coupling with Sigma

The one-way coupling algorithm between Sigma/CFD and Sierra/SD is outlined in Figure 7. This one-way
algorithm provides a starting point for the two-way approach.

1.18.2 Two Way FSI coupling with Sigma

This section describes

1. The algorithm used in SIGMA CFD to perform calculations with moving meshes

2. How this would be leveraged to carry out two-way coupled FSI calculations.

3. How this can be implemented by building upon the one-way coupled FSI implementation.



84

1. The Sigma/CFD and Sierra/SD are started simultaneously using MPI.

2. During the initialization phase, structural nodes and time step information is
communicated from the Sierra/SD to Sigma/CFD.

• Sierra/SD sends time step to Sigma.

• Sierra/SD identifies nodes on the fluid/structure interface where pres-
sures are required, and sends to Sigma.

• Sigma establishes a map between CFD wetted patches and structural
nodes.

• Sigma/CFD sends initial pressure loads to Sierra/SD.

3. Main loop starts. At each SD time step:

• Send continue/terminate signal from Sigma to Sierra.

• if continuing:

(a) Sigma/CFD interpolates the pressures (in both time and space),
and sends nodal pressures to Sierra/SD. Sigma/CFD uses a bilin-
ear interpolation of pressures from CFD cell centers to the pro-
jected nodes. Alternatively, the user may request interpolation to
the nearest node.

(b) Sigma/CFD communicates those pressures to the structure.
(c) All communications are passed through the root processors, i.e.

processor zero of each application.

4. CFD code proceeds to next steps while Sierra/SD runs for 1 time step. Typi-
cally the CFD analysis will have many time steps before the next communi-
cation with Sierra.

5. Sigma/CFD is ready to send next load in time to Sierra/SD but waits until
last message has been delivered.

6. Repeat main loop until Sigma/CFD sends “terminate” message to Sierra/SD.

Figure 7. One-Way Coupling Algorithm for Sigma/CFD and Sierra/SD
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Current Moving Mesh Algorithm in SIGMA CFD

The following steps describe the moving mesh algorithm used presently in SIGMA CFD to advance the
solution from time level n to n+ 1. For purposes of this document, it is assumed that the surface motion
(nodal displacements, velocities) of a chosen set of surfaces (referred to as moving bodies here) is known at
time level n and n+1 - either prescribed or otherwise computed.

1. Given motion of moving bodies and new surface coordinates at time level n+ 1, propagate motion
through the mesh.

Currently this is done through an inverse distance weighted algorithm. The closest surface patch on
each moving body is computed. The motion of that patch is decomposed into translation and rotation.
The translation and rotation of any point in the mesh due to each body is computed using a function
that varies inversely with distance from the body. The contribution due to each body is summed to
obtain the net motion of the grid point. The geometric conservation law (GCL) (and see37, 38) states
essentially that volume is conserved.

2. Compute the face flux through each face in the mesh.

3. Compute the new volumes for each cell in the mesh.

These two calculations are done in a manner that implicitly satisfies the GCL.

4. Using the computed volumes and face fluxes due to mesh motion, update the solution by solving the
Navier-Stokes equations with mesh motion.

This step typically involves Newton iterations due to the approximate linearization used in the dis-
cretization.

The above algorithm can be used to perform two-way coupled FSI calculations, if the motion of the
moving bodies is computed using a computational structural dynamics (CSD) solver and transferred to
SIGMA CFD. This algorithm can be described as follows:

1. Transfer initial pressures at time level n from CFD to CSD code.

2. Compute the motion of moving bodies using CSD code to obtain nodal coordinates and velocities for
the moving bodies at time level n+1.

3. Transfer motion of moving bodies at level n+1 from CSD code to CFD code.

4. Given motion of moving bodies and new surface coordinates at time level n+ 1, propagate motion
through mesh.

(a) Currently this is done through an inverse distance weighted algorithm. The closest surface patch
on each moving body is computed. The motion of that patch is decomposed into translation and
rotation. The translation and rotation of any point in the mesh due to each body is computed
using a function that varies inversely with distance from the body. The contribution due to each
body is summed to obtain net motion of grid point.

5. Compute the face flux through each face in the mesh.

6. Compute the new volumes for each cell in the mesh.
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(a) These two calculations are done in a manner that implicitly satisfies the GCL.

7. Using the computed volumes and face fluxes due to mesh motion, update the solution by solving the
NS equations with mesh motion.

(a) This step typically involves Newton iterations due to approximate linearization used in the dis-
cretization.

Note that this algorithm is identical to the Conventional Serial Staggered (CSS) algorithm described in,39 a
reference that builds on.40 Also see section 4.2 of that paper, a General Serial Staggered procedure (GSS) is
proposed in which the steps above are modified as follows :

1. Transfer pressures at time level n from CFD code to CSD code.

2. Compute a prediction of the motion at time level n+1 of the moving bodies using CSD code to obtain
nodal coordinates and velocities for the moving bodies.

3. Transfer predicted motion of moving bodies at level n+1 from CSD code to CFD code.

4. Compute face fluxes through each face in the mesh and new volumes for each cell in the mesh.

5. Using the computed volumes and face fluxes due to mesh motion, update the solution by solving the
NS equations with mesh motion.

6. Compute a correction to the loads based on pressures at two time levels, n and n+ 1 and transfer to
CSD code.

(a) Update motion of the bodies using corrected loads.

Note that in this algorithm, the corrected body motion is not transferred back to the CFD code, a potential
sub-iteration algorithm can be used here to iterate this loop to convergence. In,39 it is shown that without
the sub-iteration, this is still second order. Whether we use the CSS or GSS algorithm, its implementation
within the current FSI framework should be identical (without the last mentioned sub-iterations). The one-
way algorithm is outlined in Figure 7 and provides a baseline for the two-way coupling.

1.19 TWO-WAY Coupled FSI Implementation

A two-way coupling algorithm building upon the above implementation of the one-way algorithm is outlined
here. The new steps to augment the existing implementation are marked in red. The fluid mesh never changes
the structural mesh.

1. Transfer a Flag to denote one-way or two-way coupling mode from SIGMA CFD to Sierra/SD.

2. Get the requested time step size from SIGMA CFD and from from Sierra/SD, and tell both codes to
use the minimum of the two time step sizes. In practice the SIGMA CFD time step size is the largest
time step size known with sub-cycling on the fluid side.

3. Transfer number of wetted surface nodes and nodal coordinates from Sierra/SD to SIGMA CFD.
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4. Transfer initial time from Sierra/SD to SIGMA CFD.

(a) Setup a map between the CFD wetted patches (identified through input) in SIGMA CFD and the
structural nodes obtained from Sierra/SD.

5. If Two-way mode, transfer number of wetted CFD Nodes and Nodal coordinates from SIGMA CFD
to Sierra/SD.

(a) Setup a map between the CSD wetted surface and the CFD nodes obtained from SIGMA CFD.

6. Transfer initial Pressure loads from SIGMA CFD to Sierra/SD.

7. At each step of time marching scheme in SIGMA CFD:

(a) Send continue/terminate signal from SIGMA CFD to Sierra/SD.

(b) If continuing,

i. Transfer displacements and nodal velocities on CFD wetted surface from Sierra/SD to
SIGMA CFD.

ii. Update moving mesh SIGMA CFD solution.
iii. Send Updated pressure loads to Sierra/SD.
iv. GSS: Update CSD solution using updated pressures.

(c) Determine if done or continuing, exit if done.

8. Send terminate signal to Sierra/SD.

9. Exit.

The above description holds for the CSS algorithm as implemented.

In the future, the coupling may be extended to the GSS algorithm. The pressures loads transferred from
SIGMA CFD to Sierra/SD in Step 7(b)iii above, “Send updated pressure loads to Sierra/SD,” will use one
of the formulae given in equation 28 in reference 39. In this case, Sierra/SD would have to be modified to a
predictor-corrector scheme as described in 39.

1.20 Shock Response Spectra

Theory for computation of a shock response spectrum may be found in the papers by Smallwood.41, 42 The
theory is not repeated here. Many analysts use the matlab scripts developed by Smallwood to perform this
analysis. Matlab provides a nice, interactive environment for this analysis once the time integration has been
performed in Sierra/SD. Sierra/SD performs exactly the same calculations.

1.21 Waterline Determination

We develop the approach for solution of a rigid body floating in a fluid. When the ship is treated as a rigid
body, its equilibrium equations simplify to six equations in six unknowns that involve force and moment
balances in three coordinate directions. However, from symmetry considerations we may assume that the
displacements of the ship are zero in the plane of the waterline. Further, we assume that the angular rotation
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of the ship about an axis normal to the waterline is also zero. Thus, the six equilibrium equations can
be reduced to three. For convenience, we take the ship to be fixed in space while the orientation of the
waterline plane is described by in-plane rotations θ1 and θ2. The position of the ship mass center above and
perpendicular to the waterline is denoted by the coordinate z. Additional details on the coordinate z and the
angles θ1 and θ2 are provided in section 1.21.1.

Since the three equilibrium equations are nonlinear in the angles θ1 and θ2, we employ Newton’s method
for their solution. The Newton step that is associated with the three equilibrium equations is obtained from
the solution of the linear system

KKKT

 ∆z
∆θ1
∆θ2

=−

 F3
M1
M2

 , (1.323)

where KKKT is the tangent stiffness matrix. The terms ∆z, ∆θ1, and ∆θ2 are incremental updates to the co-
ordinate z and the two angles θ1 and θ2. The terms on the right hand side of (1.323) involve the net force
and moments acting about the ship center of mass due to buoyancy forces (pressure loads from water) and
gravity. Again, more details are provided later on the precise form of these terms. Additional details on the
implementation of Newton’s method are provided in § 1.21.5

1.21.1 Reference Frames

The position vector of a node n in a fixed reference frame A can be expressed as

pppn = xn,1aaa1 + xn,2aaa2 + xn,3aaa3, (1.324)

where (xn,1,xn,2,xn,3) are the coordinates of the node and aaa1,aaa2,aaa3 are unit vectors aligned with coordinate
directions X1,X2,X3. We note in the present context that (xn,1,xn,2,xn,3) are simply the coordinates of the
node in the Exodus finite element model used by Sierra-SD. Further, we take aaa3 to be directed vertically
upward.

Consider a rigid body B with attached unit vectors bbb1,bbb2,bbb3 that are initially aligned with aaa1,aaa2,aaa3. A
rotation of B by θ1 about the aaa1 direction results in

bbb1 = aaa1, bbb2 = cosθ1aaa2 + sinθ1aaa3, bbb3 = cosθ1aaa3− sinθ1aaa2. (1.325)

Next, consider a rigid body C with attached unit vectors ccc1,ccc2,ccc3 that are initially aligned with bbb1,bbb2,bbb3. A
rotation of C by θ2 about the bbb2 direction gives us

ccc1 = cosθ2bbb1− sinθ2bbb3, ccc2 = bbb2, ccc3 = cosθ2bbb3 + sinθ2bbb1. (1.326)

Combining (1.325) and (1.326), we find

ccc1 = cosθ2aaa1 + sinθ2 sinθ1aaa2− sinθ2 cosθ1aaa3, (1.327)

ccc2 = cosθ1aaa2 + sinθ1aaa3, (1.328)

ccc3 = sinθ2aaa1− cosθ2 sinθ1aaa2 + cosθ2 cosθ1aaa3. (1.329)

For purposes of convenience, we choose unit vector ccc3 to be in the direction normal to the waterline and
directed away from the water. Similarly, unit vectors ccc1 and ccc2 are also attached to the waterline frame.
Using summation notation, (1.327-1.329) can be expressed concisely as

ccci = ci jaaa j, (1.330)
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Figure 8. Sketch showing ship, origin O of waterline frame, coordinate
z, and angle θ2.

where the scalar coefficient ci j = ccci ·aaa j and appears as the entry in row i and column j of the direction cosine
matrix

D =

 cosθ2 sinθ1 sinθ2 −cosθ1 sinθ2
0 cosθ1 sinθ1

sinθ2 −sinθ1 cosθ2 cosθ1 cosθ2

 .
We note that the columns of D are orthonormal, i.e., D−1 = DT .

The origin O of the waterline frame is chosen as the point of intersection of the line in direction ccc3
passing through the ship mass center with the plane of the water (see Figure 8). Thus, the position vector of
the center of mass of the ship relative to O can be expressed simply as

pppcm/O = zccc3. (1.331)

1.21.2 Pressure at a Node

We would like to express the position vector of a node as in (1.324), but now relative to O rather than the
origin of reference frame A. To this end, let the position vector of the center of mass of the ship relative to
the origin of A be expressed as

pppcm = xcm,1aaa1 + xcm,2aaa2 + xcm,3aaa3. (1.332)

We note the coordinates (xcm,1,xcm,2,xcm,3) are readily available from Sierra-SD. Next, let the position vector
of O relative to the origin of A be expressed as

pppO = xO,1aaa1 + xO,2aaa2 + xO,3aaa3. (1.333)

Since pppcm = pppO + pppcm/O, it follows from the previous three equations and (1.330) that

xO, j = xcm, j− zc3 j j = 1,2,3. (1.334)
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The pressure at node n depends on its depth below the waterline. Specifically,

p(n) =−ρg(pppn− pppO) · ccc3

=−ρg((xn,1− xO,1)c13 +(xn,2− xO,2)c23 +(xn,3− xO,3)c33), (1.335)

where ρ is the density of water and g is the acceleration of gravity. If the pressure calculated from (1.335) is
negative, this indicates the node is above the waterline and we set p(n) = 0.

1.21.3 Waterline Plane Specification

Recall that three non-colinear points ttt1, ttt2, ttt3 are specified in the Solution block to define an initial guess for
the plane of the waterline. Defining

vvv1 := ttt2− ttt1, vvv2 := ttt3− ttt1,

the unit normal to this plane is given by

nnn =
vvv1× vvv2

‖vvv1× vvv2‖
= n1aaa1 +n2aaa2 +n3aaa3. (1.336)

If nnn ·aaa3 = n3 < 0, then we simply multiply nnn by -1 so that nnn points out of the water rather than into it.

We next show how to relate the waterline plane to the variables θ1, θ2 and z. Since nnn = ccc3, we find from
(1.329) and (1.336) that

sinθ2 = n1, −sinθ1 cosθ2 = n2, cosθ1 cosθ2 = n3, (1.337)

from which follows
θ2 = arcsin(n1), θ1 = arctan(−n2/n3). (1.338)

We will print a warning message if either |θ1| or |θ2| is greater than π/4 (45 degrees). Since the origin O is
in the plane of the waterline, nnn = ccc3, and pppO = pppcm− pppcm/O, we find from (1.331) and (1.332) that

z = (pppcm− pppO) ·nnn
= (xcm,1− xO,1)n1 +(xcm,2− xO,2)n2 +(xcm,3− xO,3)n3. (1.339)

We note in the previous expression that pppO may be replaced by either ttt1, ttt2 or ttt3 since these three points are
also in the waterline plane.

As described later, Newton’s method is used to solve one force and two equilibrium equations in terms
of the coordinate z and the angles θ1 and θ2. After a converged solution is obtained, it is important for the
analyst to confirm that the sideset used for the problem specification includes all element faces of the outer
ship surface which contain one or more nodes below the waterline.

1.21.4 Net Force and Moment Calculation

With equation (1.335) in hand, Sierra-SD can be used to calculate and assemble the water pressure loads
into equivalent nodal loads. This process involves the interpolation of nodal pressures to Gauss points and
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numerical integration. The equivalent nodal loads can then be used to determine the net force and moment
acting on the ship. We outline a procedure for doing this calculation in the following paragraphs.

Let fi denote the load vector for subdomain (processor) i resulting from water pressure loads. We note
each row of fi corresponds to a load for a particular degree of freedom. For example, row 7 of fi may
correspond to a force at a specific node in coordinate direction 3. The vector fi is associated with a set Ni

of nodes in subdomain i. Further, we note that the force vector fff n and the moment vector mmmn at node n ∈Ni

can be extracted directly from fi.

Let rrrn := pppn− pppcm denote the position vector from the ship center of mass to node n. Summing contri-
butions from all the nodes in Ni, we find that the net force and moment contribution from subdomain i is
given by

FFF i = ∑
n∈Ni

fff n, (1.340)

MMMi = ∑
n∈Ni

rrrn× fff n. (1.341)

Summing contributions from all N subdomains, the net force and moment about the mass center of the ship
is given by

FFFs =
N

∑
i=1

FFF i = Fs,1aaa1 +Fs,2aaa2 +Fs,3aaa3 (1.342)

MMMs =
N

∑
i=1

MMMi = Ms,1aaa1 +Ms,2aaa2 +Ms,3aaa3. (1.343)

Returning to (1.323), we have

F3 = FFFs · ccc3−msg = c3,1Fs,1 + c3,2Fs,2 + c3,3Fs,3−msg, (1.344)

M1 = MMMs · ccc1 = c1,1Ms,1 + c1,2Ms,2 + c1,3Ms,3, (1.345)

M2 = MMMs · ccc2 = c2,1Ms,1 + c2,2Ms,2 + c2,3Ms,3, (1.346)

where ms is the mass of the ship.

1.21.5 Algorithms

Newton’s Method

The initial solution of the nonlinear equations applies Newton’s method directly on the non-symmetric KKKT .
The matrix KKKT will in general be non-symmetric due to follower contributions. If convergence issues arise,
we may be regularized using a variety of approaches.

The method can be summarized as follows.

1. Let f (p) represent the force balance, with p, the parameters equal to z, θ1, and θ2.

2. Let KKKT (p) = d f (p)/d p represent the tangent stiffness matrix obtained by differentiating the force
balance with respect to the input parameters.
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3. For each iteration, Newton’s method estimates a new parameter set,

pn+1 = pn−KKK−1
T f (pn)

4. Iteration continues until the force balance approaches zero.

Tangent Matrix

We apply finite differences together with (1.344-1.346) to calculate the tangent matrix, KKKT . We use a finite
difference step size of 0.001 for the dimensionless variables θ1 and θ2, while the step size for z is 0.001
times a characteristic length of the ship.
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2 Acoustics and Structural Acoustics

2.1 Derivation of Acoustic Wave Equation

Under certain assumptions, fluid motion can be approximated as small-amplitude linear wave propagation.
We give a short background on the assumptions that go into the derivation of the acoustic wave equation.
In the most general case the fluid motion is governed by the compressible Navier Stokes equations. In the
case of small-amplitude wave propagation, viscosity is typically neglected, and a polytropic relationship is
assumed between pressure and density in the fluid. In this case, the fluid motion is described by the nonlinear
Euler equations

∂ρ

∂t
+∇∇∇ · (ρuuu) = 0 (2.1)

ρ
∂uuu
∂t

+ρuuu ·∇∇∇uuu+∇∇∇p = 0 (2.2)

where equations (2.1) and (2.2) represent mass and momentum conservation, respectively, and p, ρ and uuu
represent the fluid pressure, density, and velocity. Note that these are both nonlinear equations, and thus
allow for both fluid convection and wave propagation. In addition, we note that a nonlinear pressure-density
relation exists for a given fluid

p = p(ρ) (2.3)

Equations (2.1), (2.2), and (2.3) are fully nonlinear, but they can be linearized under the assumptions
of small fluid motion. First, we decompose the pressure and density into ambient (background) values plus
small perturbations.

p = p0 +δp

ρ = ρ0 +δρ
(2.4)

where p0 and ρ0 represent background (ambient) pressure and density, respectively. Furthermore δp and δρ

represent small perturbations in those same quantities about a zero background velocity.

Next, we insert equations (2.4) into equations (2.1), (2.2), and (2.3), and in keeping with the linearization
process we neglect terms that involve products of perturbations. This yields the following

∂ρ

∂t
+∇∇∇ · (ρuuu)

=
∂δρ

∂t
+∇∇∇ · (ρ0 +δρ)uuu

=
∂δρ

∂t
+ρ0∇ ·uuu = 0

(2.5)

(ρ0 +δρ)
∂uuu
∂t

+(ρ0 +δρ)uuu ·∇∇∇u+∇∇∇(p0 +δp)

= ρ0
∂uuu
∂t

+∇∇∇δp = 0
(2.6)

p = p(ρ) = p0 +
∂p
∂ρ

(ρ0)δρ+ ... (2.7)
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where we have linearized the pressure-density relation (2.7) by taking only the first term in a Taylor series
expansion. We also note that the speed of sound is defined by the derivative in equation (2.7)

c2 ≡ ∂p
∂ρ

(ρ0) (2.8)

which implies that
δp = c2

δρ (2.9)

Combining equations (2.5), (2.6), and (2.9), we arrive at the linear Euler equations

ρ0
∂uuu
∂t

+∇∇∇δp = 0

∂δp
∂t

+ c2
ρ0∇∇∇ ·uuu = 0

(2.10)

Taking the divergence of the first of equations (2.10), and the time derivative of the second of equa-
tions (2.10), and then subtracting one of the equations from the other, we arrive at the linear wave equation

1
c2

∂2 p
∂t2 −∆p = 0 (2.11)

where we have used p in place of δp for notational convenience.

Finite element analysis of acoustic and structural acoustic phenomena has become a common practice
in both academia and industry. Excellent review articles43, 44 have been written on the subject.

Having the same mesh density in the acoustic fluid and solid may be very inefficient, since the two
domains typically require significantly different mesh densities to achieve a given level of discretization
accuracy. Perhaps more importantly, it is also impractical in many applications since the mesh generation
process may be performed separately for the two domains. Generating conforming meshes on the wet inter-
face may be very difficult, if not impossible, even given the most sophisticated mesh generation software.
Illustrative examples include the hull of a ship, or the skin of an aircraft. In these cases, the structural and
fluid meshes are typically created independently, and have very different mesh density requirements. Joining
them into a single, monolithic mesh is often impractical.

Although methods for joining dissimilar meshes are well-known in structural mechanics,45, 46, 47, 48 very
few papers exist in the area of dissimilar structural acoustic meshes. Mandel49 considered parallel do-
main decomposition techniques for structural acoustics in the frequency domain, on mismatched fluid/solid
meshes. Nonconforming discretizations on the wet interface were handled by duplicating acoustic and struc-
tural degrees of freedom on either side of the wet interface, and imposing coupling equations that enforce
continuity of pressure and displacement. The duplicated degrees of freedom were then included in a dual-
primal, parallel domain decomposition strategy. Only two-dimensional, frequency-domain problems were
considered. Flemisch et al.50 studied both fluid-fluid and structure-fluid coupling on mismatched meshes.
For fluid-fluid coupling, a mortar approach was taken, whereas for structural acoustic coupling, the cou-
pling matrices were assembled in normal fashion and used across the wet interface to coupled the fluid-solid
responses. Only time-domain, serial solutions were considered.

Several recent references considered a displacement-based acoustic formulation, which was then cou-
pled to an elasticity formulation on mismatched fluid/solid meshes. Alonzo51 used an adaptive method with
error estimation to refine the fluid/solid meshes accordingly. The error estimator demanded different mesh
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densities on the fluid and solid interface, as expected. Bermudez52 also considered a displacement-based
acoustic formulation, but used an integral constraint on the wet interface, along with a static condensation
procedure to eliminate the acoustic degrees of freedom. In both of the preceding references, Raviart-Thomas
elements were needed to avoid spurious modes in the fluid. These modes would have been automatically
eliminated with the use of a potential formulation in the fluid.

In this document, a new technique is presented for structural acoustic analysis in the case of noncon-
forming fluid/solid interface meshes. We first construct a simple method for coupling mismatched fluid/fluid
meshes, based on a set of linear constraint equations. Using static condensation, we show how these con-
straint equations can be eliminated from the final system of equations. We then demonstrate that the same
approach can be taken to couple mismatched fluid/solid meshes, provided that the coupling matrices that are
typically used for conforming fluid/solid meshes are calculated on the structural side of the interface, and
that extra (“ghost”) acoustic degrees of freedom are introduced on the structural side of the wet interface.
With this arrangement, the structural acoustic coupling resembles a conforming method on the structural
side of the wet interface, and then the fluid degrees of freedom on both sides are coupled with the same
approach that was used for the nonconforming fluid-fluid meshes. The coupling operators ensure a weak
continuity of particle velocity and stress between the structural degrees of freedom and the ghost acoustic
degrees of freedom, and then the linear constraints ensure continuity of acoustic pressure between the two
sets of acoustic degrees of freedom.

Although we do not consider more sophisticated methods for nonconforming acoustic/acoustic meshes,
such as mortar methods, our approach allows such methods to be readily applied to nonconforming structural
acoustic meshes, since the wet interface coupling involves only acoustic degrees of freedom. Also, in the
case that the fluid/solid meshes are conforming, our approach reduces to standard methods for conformal
structural acoustic coupling.

2.2 The Governing Equations and Their Discretizations

In this section, we review the governing equations of acoustics and structural acoustics, along with their
corresponding weak formulations, and then we present our approach for the nonconforming discretization.
We begin with the case when all meshes are fully conforming, and then we extend this to the nonconforming
case.

2.2.1 Conforming Structural Acoustics

We begin by constructing a weak formulation of the linear acoustic wave equation for conforming meshes.
Subsequently, we consider conforming structural acoustics.

The linear acoustic wave equation is given by

1
c2

∂2ψ

∂t2 −∆ψ = 0, (2.12)

where ψ is the velocity potential (u = ∇ψ, where u is the particle velocity, and c is the speed of sound. Note
that this implies that we neglect volume (body) forces on the fluid.

A weak formulation of equation (2.12) can be constructed by multiplying with a test function and in-
tegrating by parts. We denote the fluid domain by Ω f and its boundary by ∂Ω = ∂Ωn

⋃
∂Ωd , where the
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subscripts n and d refer to the portions of the boundary where Neumann and Dirichlet boundary conditions
are applied. We also assume that the fluid is initially at rest, i.e. ψ(x,0) = ψ̇(x,0) = 0, which is sufficient
for most applications.

Denoting by Vf (Ω f ) the function space for the fluid, the weak formulation can be written as follows.
Find the velocity potential ψ : [0,T ]→Vf (Ω f ) such that

1
c2

∫
Ω

ψ̈φdx+
∫

Ω

∇ψ ·∇φdx =−
∫

∂Ω

φ∇ψ ·dsss =−
∫

∂Ωn

ρ f φu ·dsss (2.13)

∀φ ∈Vf (Ω f ), where the fluid velocity u is prescribed on the Neumann portion of the fluid boundary, Ωn.

Inserting a finite element discretization φ(x) = ∑
N
i=1 φiNi(x) into equation (2.13) results in the system of

equations
Mψ̈+Kψ = fa, (2.14)

where N is the vector of shape functions, M =
∫

Ω f
1
c2 NNT dx is the mass matrix, K =

∫
Ω f

∇N ·∇NT dx is the
stiffness matrix, and fa =

∫
∂Ωn

ρ f u̇nNT dx is the external forcing vector from Neumann boundary conditions.

For structural acoustics, the second order equations of motion for the solid and the wave equation for
the fluid are

ρsutt −∇ ·σ = f ,
1
c2

∂2ψ

∂t2 −∆ψ = 0. (2.15)

Here u = (ux,uy,uz) corresponds to the displacement of the structure, σ is the structural stress tensor, ρs is
the density in the solid, and f denotes the body forces on the solid. Subsequently, the subscripts s and f will
refer to solid and fluid, respectively.

Recall53 that p =−ρ∂tψ. The fluid/solid or wet interface is designated by ∂Ωwet . The normal to ∂Ωwet

points from solid into the fluid. In linear acoustics the boundary conditions on ∂Ωwet are

∂ψ

∂n
=∇ψn̂, σn̂ =−ψn̂, (2.16)

where ρ f is the density of the fluid, and n̂ is the surface normal vector. These boundary conditions corre-
spond to continuity of velocity and stress at the wet interface respectively.

The weak formulation of the coupled problem is constructed by multiplying the two partial differential
equations in equation (2.15) by test functions and integrating by parts. Denoting by Vs(Ωs) and Vf (Ω f ) the
function spaces for the solid and fluid, respectively, we have the following weak formulation.

Find the mapping (u,ψ) : [0,T ]→Vs(Ωs)×Vf (Ω f ) such that

∫
Ωs

ρsüwdx+
∫

Ωs

σ : ∇
swdx−

∫
∂Ωwet

σnwds =
∫

Ωs

f wdx+
∫

∂Ωn

σnwds,

1
c2

∫
Ω f

ψ̈φdx+
∫

Ω f

∇ψ ·∇φdx+
∫

∂Ωwet

∂ψ

∂n
φds

=
∫

∂Ωn

∂ψ

∂n
φds

(2.17)
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∀w ∈ Vs(Ωs) and ∀φ ∈ Vf (Ω f ), where ∂Ωn is the portion of the solid and fluid boundaries that has applied
loads, and f is used to denote body forces on the solid. Also, ∇s = 1

2

(
∇+∇T

)
is the symmetric part of the

gradient operator. If Dirichlet boundary conditions were applied to part of the structure, or if the fluid had a
portion of its boundary subjected to Dirichlet conditions, then the Sobolev spaces Vs(Ωs) and Vf (Ω f ) would
be modified accordingly to correspond to spaces that have those same boundary conditions. Recall that the
normal is defined to be positive going from solid into the fluid.

Next, we insert the boundary conditions from equation (2.16), and we define σn = g on the solid portion
of ∂Ωn, and ∂ψ

∂n = −ρ f u̇n on the fluid portion of ∂Ωn. This leads to the following weak formulation. Find
the mapping (u,ψ) [0,T ]→Vs(Ωs)×Vf (Ω f ) such that

∫
Ωs

ρsüwdx+
∫

Ωs

σ : ∇
swdx+

∫
∂Ωwet

ψ̇n̂wds =
∫

Ωs

f wdx+
∫

∂Ωn

gwds,

1
c2

∫
Ω f

ψ̈φdx+
∫

Ω f

∇ψ ·∇φdx−ρ f

∫
∂Ωwet

u̇nφds =

−ρ f

∫
∂Ωn

u̇nφds (2.18)

∀w ∈Vs(Ωs) and ∀ψ ∈Vf (Ω f ).

Assuming a linear constitutive model for the solid, and inserting the spatial discretizations u=(ux,uy,uz)=
(∑uxiNi,∑uyiNi,∑uziNi) and φ=∑φiNi into equation (2.18) yields the following semidiscrete system of lin-
ear ordinary differential equations in time[

Ms 0
0 M f

][
ü
ψ̈

]
+

[
Cs L
−ρ f LT C f

][
u̇
ψ̇

]
+

[
Ks 0
0 K f

][
u
ψ

]
=

[
fs

f f

]
, (2.19)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid, and M f , C f , and K f

denote the same for the fluid. The coupling matrices are denoted by L and LT . Coupling between fluid and
structure, as well as any damping in the fluid or solid separately, is accounted for by the damping matrices.
The quantities fs and f f denote the external forces on the solid and fluid, respectively.

2.2.2 Nonconforming Structural Acoustics

In the case of nonconforming fluid/solid discretizations, equations (2.17) and (2.18) contain some extra
technicalities. In this section we first describe a simple procedure for coupling two acoustic domains which
share a common boundary, but with nonconforming discretizations. This method serves as a stepping stone
to the case of nonconforming structural acoustics.

In order to enforce continuity of appropriate field variables between the two different surfaces, the
degrees of freedom and element surfaces involved in the coupling need to be known a priori. Given the
surface meshes of the fluid and solid, this information is non-trivial to obtain, especially in parallel, since
adjacent element surfaces may reside on different processors.
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The ACME package4 has been developed as a tool to determine surface contact conditions between
general surfaces in three dimensions. These surfaces can take the form of boundaries of finite element dis-
cretizations, as in our case, or they can be analytic surfaces. In either case, search algorithms are employed
to determine node-to-face interactions between the opposing surfaces, based on user-defined normal and
tangential search tolerances. A given node is determined to be in contact with a given face of the adjacent
surface if the distance from the node to the adjacent element face is within the user-specified search toler-
ance. The ACME package can compute contact conditions between most of the standard three-dimensional
finite elements, including hexahedral, tetrahedral, and prismatic elements. Once these interactions are de-
fined, one can devise enforcement algorithms to enforce continuity of the appropriate field variables. For the
purposes of our work, we use ACME only to determine the node-to-face interactions on the wet interface.
Once these are known, we derive our own enforcement algorithms, as explained below.

We consider the situation shown in Figure (9). Here there are 2 interacting acoustic domains, and two
contact surfaces. We adopt a master-slave approach, where one of the two interacting surfaces is designated
as a master, and the other as the slave. We denote surface 1 as master, and surface 2 as slave. For a
transient acoustic simulation involving the two meshes shown in Figure (9), we would have to solve the
system of equations given in (2.14), which would involve degrees of freedom from both acoustic domains,
subject to the constraint that the velocity potential is continuous across the nonconforming interface. The
extra equations corresponding to this constraint can be derived from a simple consideration of the contact
geometry.

Surface 1 Surface 2

Acoustic Domain 2Acoustic Domain 1

Figure 9. Two interacting acoustic domains, with nonconforming
meshes at the common interface. In this case surface 1 is defined to
be the master surface, and surface 2 is the slave.

In Figure (10), node x from surface 1 is impinging on element face y of surface 2.

If ACME determines that the distance from node x to element face y is within the user-defined search
tolerance, a constraint relation will be needed to enforce continuity of velocity potential. The constraint
relation for this interaction can be written in the form

ψ
a =

4

∑
i=1

ciψ
b
i , (2.20)
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Node "X"

Element "Y"

Surface 1Surface 2

Figure 10. A node-face interaction on the structural acoustic interface.

where ψa is the velocity potential at node x on surface 1, and ψb
i are the velocity potentials at the four nodes

of element face y on surface 2. The coefficients ci are determined from the position of node x relative to the
positions of the nodes on element face y on surface 2. More precisely, ci = Ni(ξ,η) are the values of the
surface shape functions corresponding to the nodes on the surface of element y in Figure (10), and ξ and η

are the dimensionless surface coordinates of the location of node x on the surface of element y. Thus, the
velocity potential at node x is constrained to be equal to the value that would be predicted by a finite element
interpolation on the surface of element y.

For example, in the special case that face y is square and node x lies at the center of the face y, the
coefficients ci would all be equal to 1

4 , indicating that the constraint is simply an average. This can be seen
by considering the surface shape functions corresponding to a plane bilinear element on a square ξ =−1,1,
η =−1,1.

N1 =
1
4
(1−ξ)(1−η)

N2 =
1
4
(1+ξ)(1−η)

N3 =
1
4
(1+ξ)(1+η)

N4 =
1
4
(1−ξ)(1+η)

(2.21)

If node x were at the center of element y, then ξ = η = 0, and all coefficients would be 1
4 . If x were off-

center, these coefficients would change accordingly. If the surface of element y were a triangle instead of a
square, (indicating a tetrahedral element instead of a hexahedral), the procedure would be the same, except
the shape functions in equation (2.21) would be different.
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We use this approach, sometimes referred to as standard node collocation or inconsistent tied contact,46

for all of the nodes/elements on the interacting surfaces. This results in a set of linear constraints that
enforces continuity of velocity potential at discrete points between the two acoustic meshes.

It is well known that inconsistent tied contact results in constraints which do not fully meet convergence
criteria for finite elements. In particular, meshes which rely on these methods do not always pass the static
patch test for structures.54, 47, 48, 55 Other methods such as mortar methods, provide more accurate, but more
complex approaches. Fundamentally, these methods are very similar to those presented here, as the concepts
of tying the acoustic degrees of freedom through a system of constraint equations apply.

These constraint equations can be expressed as56

CΦ = 0, (2.22)

where C is a matrix that contains all of the constraint coefficients from all of the node-face interactions, and
vector Φ contains all degrees of freedom for the problem. The vector Φ can be partitioned as

Φ =

[
Φm

Φs

]
, (2.23)

where Φs contains all slave acoustic degrees of freedom. With this partition, equation (2.22) can be written
as

CmΦm +CsΦs = 0. (2.24)

We note that the matrix Cs is diagonal either for the constraint enforcement approach used here or for a dual
mortar method.55, 48 If the constraint equations are linearly independent (assuming there are no redundant
constraints), then the matrix Cs is also nonsingular. The slave degrees of freedom can now be condensed
from the stiffness matrix by using Φs = CmsΦm, where we define Cms = −C−1

s Cm. Additional details are
provided later.

Next, we examine the dimensions of the constraint matrices defined above, and their relation with the
number of acoustic and structural nodes on the wet interface. We define ns as the number of nodes on
the structural side of the wet surface, and n the total number of degrees of freedom for the problem. The
dimensions of Cs is then seen to be ns by ns, while the dimensions of Cm is ns by n− ns. For example,
consider the mesh shown in Figure (9). If we assume that the domain on the right is a structural domain
(instead of acoustic), we would have ns = 7. In addition, only 5 columns of Cm would have nonzero entries.

Following,56 we have
K̃ = Kmm +KmsCms +CT

msKsm +CT
msKssCms (2.25)

Similar condensation expressions hold for the mass and damping matrices. While static condensation does
generate non-diagonal matrices, it does not significantly effect the sparsity of K̃ or M̃, since these are local
constraint equations that involve only a few degrees of freedom. After condensing out the slave acoustic
degrees of freedom in equation (2.14), we obtain a modified system of equations

M̃ψ̈+ K̃ψ = f̃a, (2.26)

where the tilde superscripts indicate that the slave constraints have been condensed out. Note that the vector
ψ now only contains the interior degrees of freedom (corresponding to nodes that are not on the interacting
surfaces), and the master degrees of freedom on the contact surface, since the slave degrees of freedom have
been eliminated. Equations (2.26) can also be solved in the frequency domain, as follows[

s2M̃+ K̃
]

ψ = f̃a, (2.27)
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where s is the frequency parameter that comes from the Laplace transform.

In the case of structural acoustics, the algorithm just described for the nonconforming fluid/fluid meshes
can be used as a stepping stone to the nonconforming solid/fluid meshes. In this approach, acoustic degrees
of freedom are added to the nodes on the adjacent structural side of the wet interface. We later refer to these
as the ghost acoustic degrees of freedom. Subsequently, the acoustic and structural meshes are matching on
the structural side of the wet interface, and the nodes on that side have four degrees of freedom instead of
three (i.e. three displacement and one velocity potential degree of freedom). Next, the two surface integrals
in equation (2.18), i.e.

∫
∂Ωwet

ψ̇n̂wds an ρ f
∫

∂Ωwet
u̇nφds, are both evaluated on the structural side of the

wet interface. Finally, the mismatched acoustic meshes (the “true” acoustic surface nodes and their ghost
counterparts) are tied together using the same set of linear constraint equations that was developed for the
nonconforming acoustic/acoustic case.

In addition to equations (2.19), we have a set of linear constraint equations that couple acoustic variables
across the wet interface. As in the fluid/fluid case, these constraint equations represent the relations between
the master and slave acoustic degrees of freedom, and they take the same form given by equation (2.22).
Upon condensing these constraints out of the system of equations, (2.19), we obtain a modified system of
equations [

M̃s 0
0 M̃ f

][
ü
ψ̈

]
+

[
C̃s L̃
−ρ f L̃T C̃ f

][
u̇
ψ̇

]
+

[
K̃s 0
0 K̃ f

][
u
ψ

]
=

[
f̃s

f̃ f

]
, (2.28)

where again the tilde superscripts represent the matrices with constraints condensed out. Note that, in this
case, even the structural matrices (and coupling matrices) must be modified during the constraint removal
process, even though the constraints involve only acoustic degrees of freedom. This is because of the
coupling matrices L and LT , which couple the acoustic and structural degrees of freedom on the structural
side of the wet interface. The fact that these other matrices are also modified is an essential part of the
overall fluid/solid coupling scheme. To solve this system of equations, we use the generalized alpha time
integration method,57 which is a generalization of the Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advantage of our coupling procedure
is that it can be applied equally well to nonconforming structural acoustic problems for both eigenvalue
analysis, and frequency domain analysis. The coupling terms lead to a quadratic eigenvalue problem.([

K̃s 0
0 −K̃ f /ρ f

]
+λ

[
C̃s L̃
L̃T −C̃ f /ρ f

]
+λ

2
[

M̃s 0
0 −M̃ f /ρ f

])[
u
ψ

]
= 0 (2.29)

In the case of zero damping, this is a gyroscopic system with purely imaginary eigenvalues, and complex
eigenvectors.

The frequency domain equation can be obtained by a Fourier transform of the time domain equation.
This results in following complex-valued system of equations.

([
K̃s 0
0 −K̃ f /ρ f

]
+ iω

[
C̃s L̃
L̃T −C̃ f /ρ f

]
−ω

2
[

M̃s 0
0 −M̃ f /ρ f

])[
u
ψ

]
=

[
f̃s

− f̃ f /ρ f

]
. (2.30)

In the next section on numerical results, we present results from all cases, including time domain, frequency
domain, and eigenvalue analysis simulations.

Our method can be summarized by the diagram in Figure (11). As shown the structural nodes on the
wet interface are augmented with acoustic degrees of freedom. Consequently, these nodes each have four
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degrees of freedom. These “ghosted” acoustic degrees of freedom are then constrained by the acoustic
degrees of freedom on the adjacent side of the wet interface. The structural acoustic coupling operators,
which come from the weak formulation, are both evaluated on the structural side of the wet interface.

Constraint equations join acoustic degrees of
freedom on both sides of wet interface

Acoustic subdomain Solid subdomain

1 degree of freedom per node

4 degrees of freedom per node

3 degrees of freedom per node

Figure 11. Illustration of our method for structural acoustic meshes
with nonconforming interfaces. Ghost acoustic degrees of freedom are
added to the structural side of the wet interface, and then connected to
the adjacent acoustic surface with constraint equations. The resulting
nodes in the mesh can then have either one acoustic degree of freedom
(shown by a circle), three displacement degrees of freedom (shown by a
dashed circle), or one acoustic degree of freedom and three displacement
degrees of freedom (shown by a black-filled circle).

We note that the recently introduced dual mortar method55, 48 generates a similar set of constraint equa-
tions as the ones described above.

2.3 Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with solid bodies which are immersed
in an infinite acoustic fluid. The plane waves are assumed to originate from infinity, and after impinging
on the solid body, they continue to propagate to infinity. In scattering simulations, the velocity potential is
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decomposed into a sum of the incident potential, and scattered potential

ψ
tot = ψ

in +ψ
sc (2.31)

where ψtot is the total potential, ψin is the incident potential, and ψsc is the scattered potential. The incident
potential is a known quantity, and the scattered potential is unknown. Thus, in the final formulation, the
incident potential becomes part of the right hand side forcing function, and the scattered potential remains
on the left hand side as an unknown.

We recall that the linear wave equation in terms of the total velocity potential is given by
1
c2 ψ̈

tot −∆ψ
tot = 0 (2.32)

Decomposing this into incident and scattered fields, we have[
1
c2 ψ̈

in−∆ψ
in
]
+

[
1
c2 ψ̈

sc−∆ψ
sc
]
= 0 (2.33)

Since the incident wave is assumed to satisfy the wave equation, the first part of the expression can be
dropped, and we are left with

1
c2 ψ̈

sc−∆ψ
sc = 0 (2.34)

This implies that we can solve for the scattered potential directly. The effect of the incident field is then
accounted for in the boundary conditions on the wet surface.

For scattering in the context of the coupled structural acoustic problem, it is most convenient to solve
for the scattered acoustic potential in the fluid and the total displacement field in the structure. With that
assumption, we have the following partial differential equations

ρsutot
tt −∇ ·σ = F,

1
c2 ψ̈

sc−∆ψ
sc = 0 = 0.

(2.35)

Here utot corresponds to the total displacement of the structure, σ is the structural stress tensor, ρs is the
density in the solid, and F denotes body forces on the solid. Subsequently, subscripts s and f refer to solid
and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface, which
is designated by ∂Ωwet), are

∂ψtot

∂n
=−ρ f u̇tot

n (2.36)

σn =−ψ̇
tot n̂ =−

[
ψ̇

in + ψ̇
sc] n̂ (2.37)

where ρ f is the density of the fluid, and n̂ is the surface normal vector. These boundary conditions corre-
spond to continuity of velocity and stress at the wet interface. For equation (2.36), we note that we rearrange
the terms for convenience

∂ψtot

∂n
=

∂ψin

∂n
+

∂ψsc

∂n
= −ρ f u̇tot

n

(2.38)
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Rearranging, we have

∂ψsc

∂n
= −ρ f u̇tot

n −
∂ψin

∂n
(2.39)

Equations (2.39) and (2.37) are in the form that we can insert them directly into the variational formu-
lation (2.17), with the recognition that the unknowns are the total structural displacement and scattered
velocity potential. Carrying this through, and assuming a linear constitutive model for both the solid and
fluid, the time domain equations of motion can be represented by the following semidiscrete system of linear
ordinary differential equations[

Ms 0
0 −1

ρa
Ma

][
ütot

ψ̈sc

]
+

[
Cs L
LT −1

ρa
Ca

][
u̇tot

ψ̇sc

]
+

[
Ks 0
0 −1

ρa
Ka

][
utot

ψsc

]
=

[
fs
−1
ρa

fa

]
, (2.40)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid, Ma, Ca, Ka denote
the same for the acoustic fluid, ρa is the density of the acoustic fluid, and u and ψ denote the structural
displacement and fluid velocity potential. The coupling matrices are denoted by L and LT . Coupling between
fluid and structure, as well as any damping in the fluid or solid separately, is accounted for by the damping
matrices. The quantities fs and fa denote the external forces on the solid and fluid, respectively.

The acoustic load fa for the scattering problem can be written in the form

fa =−
∫

∂Ωn

∂ψin

∂n
φds (2.41)

where again φ is a test function. Since ∂ψin

∂n is a known quantity, we can integrate equation (2.41) to obtain
the loading on the fluid side of the wet interface.

The expression for loading on the structure due to scattering loads is given by

fs =
∫

∂Ωn

ψ̇
inwds (2.42)

where w is a test function for the structural discretization. Since ψ̇in is a known quantity, the force on the
solid body can be computed from equation (2.42). Note that equations (2.41) and (2.42) require the spatial
and temporal derivatives of the incident field, ψinc. Thus, even if ψin is known, methods for computing its
spatial and temporal derivatives are also required.

Inserting the expressions for fa and fs from equations (2.41) and (2.42) into equations (2.40), we can
solve for the responses of the acoustic fluid and solid body to incident acoustic waves. The only requirement
on ψin is that it satisfies the acoustic wave equation. Note that the solution to equations (2.40) will give
the scattered acoustic potential. In order to compute the total acoustic potential, we would need to add
the incident and scattered potentials together, as in equation (2.31). Also, we note that the loads from
equations (2.41) and (2.42) are generated by a single incident wave. For multiple incident waves (as in the
case of a diffuse field), the right hand side of equations (2.28) involve a simple superposition of all of the
incident waves.

2.3.1 Frequency Domain scattering.

The incident potential satisfies the wave equation, and for a plane wave takes the form

ψ
in = Aei[k·x−ωt] (2.43)
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where ω = 2π f is the circular frequency of the wave, f is the frequency in Hz, k is the vector wave number,
and x is the vector coordinates of a point in space. The vector wave number has three components, k =
(kx,ky,kz), which define the direction of propagation of the wave. For example, for a wave propagating
strictly in the x direction, we would have k = (kx,0,0), where kx =

ω

c would be the standard wave number
from one-dimensional wave propagation. The parameter A is a scalar constant that defines the magnitude
of the wave. Although A can be made to vary with frequency, we will only consider the case where A is a
scalar constant. This simply implies that all incoming plane waves have the same amplitude (but different
frequencies). In the frequency domain, the time portion of the expression in equation (2.43) drops out, and
we are left with

ψ
in = Aeik·x (2.44)

We consider a three-dimensional elastic body, which is immersed in an infinite acoustic fluid, and sub-
jected to impinging plane waves from infinity in the frequency domain. The equations of motion of the
coupled system are given by

−ω
2
[

M̃s 0
0 M̃a

][
utot

ψsc

]
+ iω

[
C̃s L̃
−ρ f L̃T C̃ f

][
utot

ψsc

]
+

[
K̃s 0
0 K̃a

][
utot

ψsc

]
=

[
f̃s
−1
ρa

f̃a

]
. (2.45)

We recall that the portion of the acoustic load fa that comes from Neumann boundary conditions can be
computed from equation (2.41). Given equation (2.44), we define n = (nx,ny,nz) to be the surface normal
of the solid body. We also let k = ω

c (dirx,diry,dirz), where (dirx,diry,dirz) define the direction cosines of
the direction of propagation of the incident plane wave. Then, we have

∂ψin

∂n
= ∇ψ

in ·n = i
ω

c
[nxdirx +nydiry +nzdirz]Aeik·x (2.46)

Inserting this expression into equation (2.41), and integrating, we obtain the loading on the acoustic fluid
due to scattering.

For the loading on the structure, we recall the expression for loading on the structure due to Neumann
boundary conditions in equation (2.42). In the frequency domain case, σn = nψ̇in = inωψin = inωAei(k·x).
Inserting this expression into equation (2.42), and integrating, we obtain the loading on the solid body due
to scattering.

Finally, we examine the complex-valued loads presented in equations (2.41) and (2.42). We make two
observations regarding these loads.

1. These loads have real and imaginary parts, and thus even for a single plane wave, they cannot be
combined into a single vector, even though they have the same multiplication factor A. Currently,
Sierra/SD combines load vectors that have the same time function into a single array. For the case
of complex loads in the frequency domain, this translates into combining the real and imaginary
parts into a single array if they have the same “time” function, which in this case corresponds to the
multiplication factor A. A temporary work-around is to use distinct time functions for the real and
imaginary parts in the input deck. (even if the time functions themselves are identical). Otherwise, if
the same time function is used, the real and imaginary parts would be combined into a single vector
in Sierra/SD.

2. We have considered the case where the coefficient A is a scalar constant, but we could also consider
the case where A = A(ω) is a function of frequency. This would correspond to multiple plane waves
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of different amplitudes impinging on the structure. Since the spatial parts of these loads varies with
frequency, they could not be computed by adding the spatial parts together before multiplying by the
coefficient A(ω). Thus, we would have an inconsistency with the current approach in Sierra/SD of
adding the spatial parts together before multiplying by the time function (which in this case would be
A(ω)).

2.4 Nonlinear Acoustics

Linear acoustic theory is based on the assumptions of small amplitude waves and a linear constitutive the-
ory of the fluid medium. Although these assumptions hold for many vibro-acoustic interactions, they are
invalid in sound fields with high sound pressure levels,58, 59, 60 i.e. sound fields that have finite amplitude
waves. Finite amplitude waves can be generated in interior fields when resonance occurs,61 in the far-field
of atmospheric and underwater explosions,62 in tire noise generation,63 and in many aeroacoustic sources
(such as sonic booms).58 Nonlinear effects increase with the frequency of the waves, and thus the study
of nonlinear acoustics has also become important in high-frequency applications such as ultrasound.64, 65

Unlike the linear acoustic wave equation, the nonlinear counterparts can handle waves with finite amplitude,
and allow more accurate modeling of nonlinear constitutive models in the fluid.

The classical Kuznetsov equation66 treats three-dimensional nonlinear acoustic waves to second order
in nonlinearity. Recently, Soderholm67 generalized Kuznetsov’s equation using the exact equation of state,
rather than a series expansion. The nonlinear terms in these wave equations imply that the sound speed
depends on the stress state in the fluid. This leads, eventually, to the formation of weak shocks (small
discontinuities in acoustic pressure). For a monofrequency source, energy will be gradually transferred
from lower harmonics to higher harmonics, leading to a steepening of an initially smooth wave. Weak
shocks radiated from a structure lead to unpleasant cracking noise, and when impinging on a structure they
cause a very different response than smooth acoustic waves. Thus, it is important to characterize their effects
in both noise radiation and structural coupling problems.

The governing equations of acoustics can be formulated in terms of particle displacement, or scalar-
based quantities such as acoustic pressure or velocity potential. In particle displacement approach, the mesh
moves with the waves, whereas in the latter approaches the mesh is fixed. The primary advantage of the
displacement approach is its easy coupling with a Lagrangian solid mechanics code, since the unknowns are
the same as for the solids. The displacement approach has been studied in,68, 69, 70 though these references
dealt only with the linear case. Since ideal fluids have zero shear modulus, this approach suffers from
an infinite dimensional null space consisting of rotational modes in the fluid. Numerically, this leads to
spurious modes that pollute the computed solution. These modes can be eliminated through the use of
penalty formulations, but this can result in poor conditioning. Displacement formulations for acoustics are
also prone to mesh tangling in the case of large displacements in either the solid or the fluid, making them
inappropriate for many applications.

In the Eulerian approach, the unknown is typically acoustic pressure or velocity potential. In problems
without structural coupling, the mesh remains stationary. In addition, the null space consists only of the
constant pressure mode, which makes these formulations more stable for numerical computations. On
the other hand, for coupled solid/fluid problems, the Eulerian formulation requires a coupling mechanism
between fluid and solid to handle the different degrees of freedom used to discretize the fluid/solid domains.
In the case of small structural displacements, this coupling mechanism reduces to coupling operators that
couple acoustic pressure and structural displacements between fluid and solid. In the case of large structural
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displacements or rotations, methods such as the Arbitrary Lagrangian-Eulerian (ALE) approach, which have
been developed for aeroelastic coupling,71, 38 could also be applied to the structural acoustics problem. An
alternative approach in the case of large structural motion would be a purely Eulerian method for the fluid,
wherein the solid/fluid boundary cuts through fluid elements. Regardless of the approach taken for the
structural coupling, we have chosen the Eulerian approach for acoustic discretization, since it avoids the
null space issues eluded to earlier.

Unlike the rich history of finite element formulations in nonlinear solid mechanics, the finite element
formulation of nonlinear acoustic equations for fluids has received considerably less attention. Cai et al65

recently used finite elements and parallel computations to solve Kuznetsov’s equation for the purpose of
modeling ultrasonic waves. In a sequence of works, Hoffelner et al64 also used a finite element method to
solve Kuznetsov’s equation. Later,72 they used their method to simulate acoustic streaming and radiation
force, two important acoustic phenomena that cannot be captured from linear theory. Kagawa73 took a
similar approach in solving Kuznetsov’s equation, except that additional approximations were made to the
equation prior to discretization. Vanhille et al74 used finite differences and finite volume methods to solve a
nonlinear acoustic wave equation in the Lagrangian framework.

In this section, we present a finite element implementation of the Kuznetsov wave equation. We derive
the full tangent operator for the spatial discretization, and give an implementation of a time discretization
scheme using the generalized alpha method. We then derive a formulation for coupling the Kuznetsov
equation to the equations of motion of an elastic solid.

In order to illustrate ideas, we begin with the linear acoustic wave equation

1
c2

∂2φ

∂t2 −∆φ = 0 (2.47)

where φ is the velocity potential (φ = ∇u, where u is the particle velocity), and c is the speed of sound. The
derivation of this equation neglects both convective and constitutive nonlinearities.

The nonlinear isentropic equation of state for air can be written as follows

P
P0

=

(
ρ

ρ0

)γ

(2.48)

where P and P0 are the total and reference pressures, ρ and ρ0 are the current and reference densities. γ is the
ratio of specific heats, and is equal to 1.4 for air. Equation 2.48 can then be combined with the conservation
of momentum and conservation of mass for the fluid to derive nonlinear wave equations. In Soderholm’s
approach, equation 2.48 is used directly. In Kuznetsov’s approach, it is first expanded in a Taylor series
about the isentrope s = s0

58

p = P−P0 =

(
∂P
∂ρ

)
s0,ρ0

(ρ−ρ0)+
1
2

(
∂2P
∂ρ2

)
s0,ρ0

(ρ−ρ0)
2 + ... (2.49)

which can be written compactly as

p = A
(

ρ−ρ0

ρ0

)
+

B
2

(
ρ−ρ0

ρ0

)2

+ ... (2.50)

where A = ρ0

(
∂P
∂ρ

)
s0,ρ0
≡ ρ0c2

0, and B = ρ2
0

(
∂2P
∂ρ2

)
s0,ρ0

. Since
(

∂P
∂ρ

)
s0,ρ0

= c2
0 is simply the square of the

linear speed of sound, we see from the expansion that the ratio of the first two terms is

B
A
=

ρ0

c2
0

(
∂2P
∂ρ2

)
s0,ρ0

(2.51)
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The parameter B/A accounts for the nonlinear constitutive law of the fluid up to second order. A table of
values of B/A for various fluids can be found in texts on nonlinear acoustics.58

For linear acoustics, only the first term in the expansion 2.50 is retained. In that case, we have

p = A
(

ρ−ρ0

ρ0

)
= c2

0(ρ−ρ0) (2.52)

which implies that the stiffness of the fluid is simply the square of the linear speed of sound.

Kuznetsov’s equation uses the above Taylor series expansion of the equation of state, but truncates
all terms past the second. It also accounts for convective nonlinearities to second order. The equation is
derived by combining the Taylor series expansion of the equation of state with the conservation of mass and
momentum. The result is the following.66, 61, 75, 60

1
c2

∂2φ

∂t2 −∆φ− 1
c2

∂

∂t

(
b(∆φ)+

B/A
2c2

(
∂φ

∂t

)2

+(∇φ)2

)
= 0 (2.53)

where φ is defined as p = ρ f
∂φ

∂t , and p is the acoustic pressure. The first two terms in equation 2.53 are the
same as in equation 2.47, but the fourth and fifth terms are nonlinear. The third term is actually a linear
absorption term, but it is usually grouped with the nonlinear terms to indicate deviation from the linear wave
equation. The parameter b is for absorption in the fluid due to viscosity and thermal conductivity.

Equation 2.53 was originally developed in terms of the velocity potential. Here, instead of solving for
the velocity potential, we prefer to solve for ψ such that p = ψ̇. This implies that φ = 1

ρ
ψ. Inserting this

relation into equation 2.53 yields

1
c2

∂2ψ

∂t2 −∆ψ− 1
c2

∂

∂t

(
b(∆ψ)+

B/A
2ρc2

(
∂ψ

∂t

)2

+
(∇ψ)2

ρ

)
= 0 (2.54)

This is done only for convenience, since the acoustic pressure can easily be computed during postprocessing
as p = ψ̇. For simplicity, we will still refer to ψ as the velocity potential in the remainder of this paper.

Soderholm67 derived a higher order nonlinear acoustic equation that accounts for nonlinearities to higher
order. In this approach, the exact equation of state, equation 2.48, is used directly, rather than the second
order expansion of Kuznetsov’s equation. This equation is only valid for air, whereas Kuznetsov’s equation
can be used for any fluid that has a tabulated value of B

A . After combining the equation of state with the
conservation of mass and momentum, the following equation results

1
c2

0

∂2φ

∂t2 −∆φ− b
c2

0

∂

∂t
(∆φ)+

1
c2

0

∂

∂t
(∇φ)2

+
1

2c2
0

∇φ ·∇(∇φ)2 +
γ−1

c2
0

(
∂

∂t
φ+

1
2
(∇φ)2

)
∆φ = 0

We note that Soderholm’s equation is a generalization of the exact relation given by equation 3.26 in,58

which was derived for the case of a lossless fluid. The only difference is the term b
c2

0

∂

∂t (∆φ), which accounts
for absorption.

The range of validity of nonlinear wave equations is typically given in terms of acoustic mach number.

M =
u
c0

(2.55)
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where u is the particle velocity, and c0 is the linear speed of sound. Rough guidelines are given in.75 For the
Kuznetsov equation, a limit of M≤ 0.1 is given. For a third order wave equation, a limit of M≤ 0.7 is given.
These are useful guidelines for the acoustic analyst, who needs to decide which equation is applicable to
their needs.

In summary, three-dimensional nonlinear acoustic waves in thermoviscous fluids can be modeled using
equations derived by Kuznetsov and, more recently, by Soderholm. These equations include the linear
wave equation as a special case. Kuznetsov’s equation generalizes the linear wave equation to include
nonlinearities to second order and linear dissipation. Soderholm’s equation is an additional generalization
that allows for higher degrees of nonlinearity. The dissipative term in Soderholm’s equation is the same as
in Kuznetsov’s equation.

2.4.1 Weak Formulations

In this paper we will only work with Kuznetsov’s equation, since we are interested in a formulation that is
valid for any fluid, and not just air. A weak formulation of equation 2.54 can be constructed by multiplying
with a test function and integrating by parts. We denote the fluid domain by Ω f and its boundary by ∂Ω =
∂Ωn

⋃
∂Ωd , where the subscripts n and d refer to the portions of the boundary where Neumann and Dirichlet

boundary conditions are applied. We also assume that the fluid is initially at rest, i.e. ψ(x,0) = ψ̇(x,0) =
ψ̈(x,0) = 0, which is sufficient for most applications.

Denoting by Vf (Ω f ) the function space for the fluid, the weak formulation can be written as follows.
Find the mapping ψ : [0,T ]→Vf (Ω f ) such that

1
c2

∫
Ω

ψ̈φdx+
∫

Ω

∇ψ ·∇φdx

+
1
c2

∫
Ω

b∇ψ̇ ·∇φdx− 1
ρc4 (B/A)

∫
Ω

ψ̈ψ̇φdx−

2
ρc2

∫
Ω

∇ψ̇ ·∇ψφdx =
∫

∂Ωn

∂ψ

∂n
φds =−

∫
∂Ωn

ρ f (u̇n +
b
c2 ün)φds (2.56)

∀φ ∈Vf (Ω f ), where u̇n, and ün are the prescribed particle velocity and acceleration on the Neumann portion
of the fluid boundary. Here we use φ to denote the test function, and not the velocity potential as denoted
earlier. We note that for air, b

c2 is of the order 1e−10 under normal conditions, and thus it is usually sufficient
to drop the acceleration term and approximate the right hand side as −

∫
∂Ωn

ρ f u̇nφds. We will make this
approximation in the remainder of this paper.

We note that an interesting feature of the weak formulation of equation 2.54 is that the integration by
parts only occurs on the linear elliptic terms. The nonlinear terms are not integrated by parts.

2.4.2 Spatial and Temporal Discretization

A finite element formulation of equation 2.56 is constructed by representing the unknown by a finite sum-
mation ψ(x) = ∑

n
i=1 ψiNi(x) = ψT N, and substituting in equation 2.56. This leads to the following set of

nonlinear ordinary differential equations in time

Fint(ψ̈(x, t), ψ̇(x, t),ψ(x, t)) = Fext(x, t) (2.57)
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where

F int =
1
c2

∫
Ω

ψ̈φdx+
∫

Ω

∇ψ ·∇φdx (2.58)

+
1
c2

∫
Ω

b∇ψ̇ ·∇φdx− 1
ρc4 (B/A)

∫
Ω

ψ̈ψ̇φdx−

2
ρc2

∫
Ω

∇ψ̇ ·∇ψφdx (2.59)

and

Fext =−
∫

∂Ωn

ρ f u̇nφds (2.60)

F int is the internal force, which depends on ψ and its first two time derivatives, and Fext is the external force.
We note that ψ̈ and ψ̇ actually depend on ψ through the time discretization scheme, and thus we could write
equation 2.57 as

Fint(ψ(x, t)) = Fext(x, t) (2.61)

In order to linearize equation 2.57, we could use a finite difference approach, in which the tangent
matrix is derived by differencing the internal force function with respect to an incremental displacement.
Alternatively, we could derive a full Newton tangent matrix by taking partial derivatives with respect to all
of the independent variables. We have taken the latter approach, since it reveals explicitly the fact that the
tangent matrix is nonsymmetric.

We define ψ̃, ˜̇ψ, ˜̈ψ as the current iterates, and ψ, ψ̇, ψ̈ as the unknowns. The tangent equations can be
derived by expanding the left hand side of equation 2.57 in a Taylor series. If we truncate all terms beyond
the constant and linear contributions, we obtain

Fint(ψ, ψ̇, ψ̈)≈ Fint(ψ̃, ˜̇ψ, ˜̈ψ)+[
∂Fint

∂ψ
(ψ̃, ˜̇ψ, ˜̈ψ)+

∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ)

∂ψ̇

∂ψ
+

∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ)

∂ψ̈

∂ψ

]
∆ψ = Fint(ψ̃, ˜̇ψ, ˜̈ψ)+A∆ψ

(2.62)

where ∆ψ = ψ− ψ̃, and ψ̃ is the current iterate. The full tangent matrix A is defined as

A =

[
∂Fint

∂ψ
(ψ̃, ˜̇ψ, ˜̈ψ)+

∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ)

∂ψ̇

∂ψ
+

∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ)

∂ψ̈

∂ψ

]
(2.63)

Since ∆ψ is unknown, we approximate it as ∆ψ̃ = ψ̃− ˜̃ψ, where ˜̃ψ is the previous iterate. Thus, as conver-
gence occurs, the current and previous iterates become identical.

We have chosen the generalized alpha time integration scheme57 in order to discretize equation 2.57 in
time. The generalized alpha method is based on the generalized Newmark method. The flexibility of this
method is useful in this case, since it can be made to be either implicit or explicit (e.g. central difference),
depending on the problem at hand. In displacement form, the generalized Newmark method first needs an
update equation. Given ∆ψ̃, and a previous iterate ˜̃ψ, we compute an updated current iterate as

ψ̃ = ˜̃ψ+∆ψ̃ (2.64)
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Then, we use ψ̃ to compute updated first and second time derivatives as follows

˜̈ψ =
1

β∆t2 [ψ̃−ψn− ψ̇n∆t]− 1−2β

2β
ψ̈n

˜̇ψ = ψ̇n +∆t
[
(1− γ)ψ̈n + γ ¨̃ψ

]
= ψ̇n +∆t

[
(1− γ)ψ̈n +

γ

β∆t2 [ψ̃−ψn− ψ̇n∆t]− γ
1−2β

2β
ψ̈n

]
(2.65)

where γ,β are the integration parameters for the Newmark method, and ψ̇n, ψ̈n are the first and second time
derivatives from the previous time step. Note that, as ∆ψ̃→ 0, ψ̃→ ψn+1, indicating that the current iterate
has converged to the value at the next time step, step n+1.

We can simplify by noting that, from equation 2.65,

∂ψ̇

∂ψ
=

γ

β∆t
∂ψ̈

∂ψ
=

1
β∆t2

(2.66)

We also make the following definitions, which define the tangent stiffness, damping, and mass matrices

∂Fint

∂ψ
(ψ̃, ˜̇ψ, ˜̈ψ) = Kt

∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ) =Ct

∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ) = Mt

(2.67)

where Kt , Ct , and Mt denote the tangent stiffness, damping, and mass matrices. The tangent matrices are the
derivatives of the internal force, but evaluated at the current Newton iteration. Substituting equations 2.66
and 2.67 into equation 2.62 yields

Fint(ψ, ψ̇, ψ̈) = Fint(ψ̃, ˜̇ψ, ˜̈ψ)+
[

Kt +
γ

β∆t
Ct +

1
β∆t2 Mt

]
∆ψ (2.68)

Finally, substituting equation 2.68 into equation 2.57 yields[
Kt +

γ

β∆t
Ct +

1
β∆t2 Mt

]
∆ψ = Fext −Fint(ψ̃, ˜̇ψ, ˜̈ψ) = Res (2.69)

Note that the right hand side of equation 2.69 is simply the residual, or the difference between the external
force and the internal force at the current Newton iteration. As convergence occurs, the residual goes to
zero.
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We now derive explicit expressions for Kt , Ct , and Mt . We have

Kt =
∂Fint

∂ψ
(ψ̃, ˜̇ψ, ˜̈ψ)

=
∫

Ω

∇NT ·∇Ndx− 2
ρc2

∫
Ω

(∇ ˜̇ψ ·∇NT )Ndx (2.70)

Ct =
∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ)

=
1
c2

∫
Ω

b∇NT ·∇Ndx− 2
ρc2

∫
Ω

(∇ψ̃ ·∇NT )Ndx (2.71)

− 1
ρc4 B/A

∫
Ω

˜̈ψNT Ndx (2.72)

(2.73)

Mt =
∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ)

=
1
c2

∫
Ω

NT Ndx− 1
ρc2 B/A

∫
Ω

˜̇ψNT Ndx (2.74)

where N is the vector of element shape functions.

For the full Newton method, these tangent matrices need to be reformed at each iteration of the Newton
loop. The tangent damping and tangent stiffness matrices are nonsymmetric, since some terms involve
products of shape functions with gradients of shape functions. However, we note that the initial tangent
matrices are all symmetric, since at time t = 0, we have ψ = 0, ψ̇ = 0 and ψ̈ = 0 by assumption. In that case,
we have

Kt0 =
∫

Ω

∇NT ·∇Ndx (2.75)

Ct0 =
1
c2

∫
Ω

b∇NT ·∇Ndx (2.76)

Mt0 =
1
c2

∫
Ω

NT Ndx (2.77)

In this work we chose the Newton method for the nonlinear solution, and thus we could use any of
the variants of this method, some requiring more and less frequent updating of the tangent matrices. In
the case of the full Newton method, the nonsymmetric tangent matrices would need to be reformed at each
iteration. In the initial Newton method, only the initial symmetric tangent needs to be formed. The numerical
experiments conducted thus far indicate that excellent convergence behavior is observed even with the initial
Newton method.
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2.4.3 Structural Coupling

The second order equations of motion for the solid and the Kuznetsov equation for the fluid are

ρsutt −∇ ·σ = f

1
c2

∂2ψ

∂t2 −∆ψ− 1
c2

∂

∂t

(
b(∆ψ)+

B/A
2ρc2

(
∂ψ

∂t

)2

+
(∇ψ)2

ρ

)
= 0

(2.78)

Here u corresponds to the displacement of the structure, σ is the structural stress tensor, and subscripts s and
f refer to solid and fluid, respectively. The equations of motion for the solid in equation 2.78 are written
in the most general form, which could include both material and geometric nonlinearities. However, since
we are only considering small structural displacements, these will now be specialized to the linear elasticity
equations.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface, which
is designated by ∂Ωwet), are

∂ψ

∂n
= −ρ f u̇n

σn = −ψ̇n̂

(2.79)

where n̂ is the surface normal vector. These correspond to continuity of velocity and stress on the wet
interface. In the case of nonlinear acoustics, the second condition is replaced by75

σn = −n̂
(

ψ̇+
1
c2 ψ̇

2− 1
2
(∇ψ)2 +b∆ψ

)
(2.80)

Clearly, the linear approximation of condition 2.80 is

σn =−ψ̇n̂ (2.81)

In,64, 65 numerical results were presented on the solution of Kuznetsov’s equation, and the approximation
2.81 was used to convert from velocity potential to pressure as a post-processing step. In our case we also
use this approximation as a post-processing step, and additionally, we use equation 2.81, rather than equation
2.80 to approximate the structural acoustic coupling. Obviously, this is an additional approximation, but it
is consistent with the previous studies.64, 65 Using relation 2.80 would lead to nonlinear boundary integral
terms, and result in a nonsymmetric formulation.

The weak formulation of the coupled problem is constructed by multiplying the two partial differential
equations in equation 2.78 by test functions and integrating by parts. Denoting by Vs(Ωs) and Vf (Ω f ) the
function spaces for the solid and fluid, respectively, we have the following weak formulation.
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Find the mapping (u,ψ) : [0,T ]→Vs(Ωs)×Vf (Ω f ) such that

∫
Ωs

ρsüwdx+
∫

Ωs

σ : ∇
swdx−

∫
∂Ωwet

σnwds =
∫

Ωs

f wdx+
∫

∂Ωn

σnwds

1
c2

∫
Ω f

ψ̈φdx+
∫

Ω f

∇ψ ·∇φdx+
∫

∂Ωwet

∂ψ

∂n
φds

+
b
c2

∫
Ω f

∇ψ̇ ·∇φdx− B/A
ρc4

∫
Ω f

ψ̈ψ̇φdx−

2
ρc2

∫
Ω f

∇ψ̇ ·∇ψφdx =
∫

∂Ωn

∂ψ

∂n
φds

(2.82)

∀w ∈ Vs(Ωs) and ∀φ ∈ Vf (Ω f ), where ∂Ωn is the portion of the solid and fluid boundaries that has applied
loads, and f is used to denote body forces on the solid. Also, ∇s = 1

2

(
∇+∇T

)
is the symmetric part of

the gradient operator. If Dirichlet boundary conditions were applied to part of the structure, or if the fluid
had a portion of its boundary subjected to Dirichlet conditions, then the Sobolev spaces Vs(Ωs) and Vf (Ω f )
would be modified accordingly to correspond to spaces that have those same boundary conditions. We also
note that in the integration on the wet interface, the normal is defined to be positive going from solid into
the fluid.

Next, we insert the boundary conditions from equation 2.79, and we define σn = g on the solid portion
of ∂Ωn, and ∂ψ

∂n = −ρ f un on the fluid portion of ∂Ωn. This leads to the following weak formulation. Find
the mapping (u,ψ) : [0,T ]→Vs(Ωs)×Vf (Ω f ) such that

∫
Ωs

ρsüwdx+
∫

Ωs

σ : ∇
swdx+

∫
∂Ωwet

ψ̇n̂wds =
∫

Ωs

f wdx+
∫

∂Ωn

gwds

1
c2

∫
Ω f

ψ̈φdx+
∫

Ω f

∇ψ ·∇φdx−ρ f

∫
∂Ωwet

u̇nφds

+
b
c2

∫
Ω f

∇ψ̇ ·∇φdx− B/A
ρc4

∫
Ω f

ψ̈ψ̇φdx−

2
ρc2

∫
Ω f

∇ψ̇ ·∇ψφdx =−ρ f

∫
∂Ωn

u̇nφds (2.83)

∀w ∈ Vs(Ωs) and ∀ψ ∈ Vf (Ω f ). Equations 2.83 are a nonlinear system of equations, since the fluid wave
equation is nonlinear.

Inserting the spatial discretizations u = ∑uiNi and φ = ∑φiNi into equation 2.83 yields the following
semidiscrete system of nonlinear ordinary differential equations in time[

Ms 0
0 M f

][
∆ü
∆ψ̈

]
+

[
Cs L
−ρ f LT C f

][
∆u̇
∆ψ̇

]
+

[
Ks 0
0 K f

][
∆u
∆ψ

]
=

[
Ress

Res f

]
(2.84)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid, and M f , C f , and K f

denote the same for the fluid. The coupling matrices are denoted by L and LT . Coupling between fluid and
structure, as well as any damping in the fluid or solid separately, is accounted for by the damping matrices.
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The quantities Ress and Res f denote the residuals in the solid and fluid, respectively (recall equation 2.69).

Ress = Fext
s −Ms ˜̈u−Cs ˜̇u−L ˜̇ψ−Ksu

Res f = Fext
f −F int

f ( ˜̈ψ, ˜̇ψ, ψ̃)

(2.85)

Equation 2.19 is solved using Newton’s method, in conjunction with the time discretization scheme that was
introduced earlier. The nonlinear terms in the fluid wave equation are accounted for in the right hand side in
the initial Newton method, but for a full Newton update, the matrices M f , C f , and K f would all need to be
updated using equations 2.70, 2.73, and 2.74.

For the initial Newton method, equation 2.84 can be symmetrized in a number of ways. For example, the
second equation can be multiplied by −1

ρ f
. This makes the system symmetric, but the matrices are indefinite.

In order to solve the coupled system of equations (2.19), we could either treat the 2× 2 block system
as a monolithic system of equations and integrate it directly, or we could use a staggered, loose coupling
scheme. For the numerical examples presented next, we simply integrate the system directly.

Finally, we note that most numerical methods for absorbing boundary conditions in acoustics have been
developed for the linear case. The development of absorbing boundary conditions for nonlinear acoustics
is an important area of research, but we do not pursue that subject here. In this paper we use first-order
absorbing boundary conditions of the form

∂ψ

∂n
=−1

c
∂ψ

∂t
(2.86)

This condition leads to an additional contribution to the matrix C f from equation 2.84. Equation 2.86 is, or
course, an additional approximation that neglects nonlinear terms. We mention that Cai65 made a similar
approximation when simulating nonlinear acoustic fields.

2.5 Absorbing Boundaries

The need to truncate acoustic domains arises in exterior problems, where the fluid or solid domain is infinite
or semi-infinite. In these cases, the domain could be truncated either with infinite elements, or absorbing
boundary conditions. We describe below the simple absorbing boundary conditions that have been imple-
mented in Sierra/SD. Infinite elements (see section (2.6)) are also implemented in Sierra/SD. We describe
the cases of an acoustic space and an elastic space separately.

2.5.1 Acoustic Space

The implementation of absorbing boundary conditions begins by considering the weak formulation of the
equations of motion, in equations (2.17). On an absorbing boundary, one needs to consider the term∫

∂Ωn

∂ψ

∂n
φds, (2.87)

which arises from the integration by parts on the acoustic space. Absorbing boundary conditions are typi-
cally derived by applying impedance matching conditions to equation (2.87), in such a way that the boundary
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absorbs waves of a given form exactly. For example, the simplest absorbing boundary conditions consist
of plane wave and spherical wave conditions,44 which are either the zero-th order accurate Sommerfeld
condition

∂ψ

∂n
=
−1
c f

∂ψ

∂t
(2.88)

or the first order accurate Bayliss-Turkel condition

∂ψ

∂n
=
−1
c f

∂ψ

∂t
− 1

R
ψ (2.89)

where R is the radius of the absorbing spherical boundary.

Inserting equation (2.88) into equation (2.87), we obtain a term proportional to ψ̇, which becomes a
damping matrix. Inserting equation (2.89) into equation (2.87), we obtain two matrix terms, one that con-
tributes to the damping matrix, and another that contributes to the stiffness matrix. Note that in the limit of
large R, the spherical wave condition reduces to the plane wave condition, since for large enough radius, the
spherical wave begins to resemble a plane wave.

Both conditions (2.88) and (2.89) are implemented in Sierra/SD.

2.5.2 Elastic Space

In the case of an elastic space, very similar absorbing boundary conditions can be applied as were in the
acoustic space, except now the boundary has to absorb both pressure and shear waves. In the case of an
acoustic medium, only pressure waves are of interest. Thus, the elastic space is slightly more complicated.

The equation of motion for an elastic space can be written as

ρutt −∇ ·σ = f (2.90)

where ρ is the material density, utt is the second time derivative of displacement, σ is the stress, and f is
the forcing. A weak formulation of this equation can be constructed by multiplying with a test function and
integrating by parts. ∫

V
ρuttwdV +

∫
V

σ : ∇wdV −
∫

∂V
σswdS =

∫
V

f ·wdV (2.91)

where w is the test function, and σs is the traction vector on ∂V , the boundary of volume V . The absorbing
boundary condition is imposed on the portions of ∂V that point into the infinite space. In this derivation,
we assume that this includes the entire boundary ∂V . If only part of the boundary pointed into the infinite
space, the derivation would be exactly the same.

Considering the term ∫
∂V

σswdS (2.92)

we note that the traction vector σs can be decomposed into its normal and tangential components, i.e. σs =
σn +σt . Then, we apply the conditions

σn =−ρcLvn (2.93)

σt =−ρcT vt
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where cL and cT are the longitudinal and shear wave speeds in the medium, and vn, vt are the normal and
tangential components of velocity vectors on the surface. Inserting these relations into equation (2.92)
yields two absorbing boundary matrices. Since these matrices involve the velocities, they become part of
the overall damping matrix of the structure.

2.6 Infinite Elements for Acoustics

Infinite elements have been around since the mid 1970’s. Excellent review articles can be found in,76.77

In the early formulations, only frequency-domain formulations were considered, and system matrices
were developed that depended on frequency in a nonlinear manner. Though these formulations worked well
in the frequency domain, there was no clear approach for transforming them back to the time domain. As
a result, time domain formulations for infinite elements were delayed for some time. The unconjugated
formulations76, 78 in the time domain formulation involved convolution integrals that could be used with the
frequency-dependent system matrices, but storing the time histories for the convolution integrals would be
a significant burden for a time-domain code.

In the early 1990’s, Astley79, 80, 81 derived a conjugated formulation that resulted in system matrices that
were independent of frequency. This allowed the frequency domain formulation to be readily transformed
to the time domain, in the same way that is typically done in linear structural dynamics. He also derived
a scheme for post-processing the infinite element degrees of freedom to compute the far-field response at
points outside of the acoustic mesh. This approach followed simply from a time-shift applied to the infinite
element degrees of freedom.

The exterior acoustic problem consists of finding a solution p, outside of some bounded region Ωi. We
refer to Figure (12) for a description of the geometry. We have an interior domain Ωi, and an exterior domain
Ωe, and a boundary Γ that separates the inner and outer domains. We wish to find the acoustic pressure p in
Ωe. In the exterior domain Ωe, the acoustic pressure must satisfy the acoustic wave equation

1
c2 p̈−∆p = 0 (2.94)

a Neumann boundary condition on Γ

∂p
∂n

= g(x, t) (2.95)

and the Sommerfeld radiation condition at infinity

∂p
∂r

+
1
c

∂p
∂t
→ 1

r
(2.96)

as r→ ∞.

We note that the weight and test functions are chosen such that the Sommerfeld condition is satisfied
identically. Then, the weak formulation reads as follows∫

Ωe

1
c2 p̈q+∇p ·∇qdV =

∫
Γ

gqdS (2.97)

In the frequency domain, the counterpart to equation (2.97) is as follows

−k2
∫

Ωe

pqdV +
∫

Ωe

∇p ·∇qdV =
∫

Γ

gqdS (2.98)
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Ω

Ω
i

e

Γ

Figure 12. Domains Ωi and Ωe and interface Γ for the exterior acoustic
problem.

where k = ω

c .

We will focus on conjugated infinite element formulations, which implies specific choices for the trial
and weight functions for the infinite elements. For the trial functions, we have

φ j(x,ω) = Pj(x)e−ikµ(x) (2.99)

and for the weight functions, we have

ψ j(x,ω) = D(x)P(x)eikµ(x) (2.100)

where P(x), D(x), and µ(x) are as yet undefined functions of x, and k = ω

c is the wavenumber. The choice of
these functions will determine the particular infinite element approach. In our case, the exponential in the
weight functions involves a conjugate of the exponential in the trial functions. This results in the exponential
canceling out in the system matrices, thus rendering the matrices independent of frequency.

Given these trial functions, the solution p(x,ω) can be written in an expansion

p(x,ω) =
N

∑
i=1

q j(x,ω)φ j(x,ω) (2.101)
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Substituting these expressions for trial and weight functions into equation (2.98), we obtain for following
expression ∫

Ωe

(Pi∇D+D∇Pi + ikDPi∇µ) · (∇Pj− ikPj∇µ)qi− k2DPiPjqidV (2.102)

Separating out terms of ω, we obtain the following expressions for the stiffness, mass and damping
matrices

Ki j =
∫

Ωe

(Pi∇D+D∇Pi) ·∇PjdV (2.103)

Ci j =
1
c

∫
Ωe

DPi∇µ ·∇Pj−PiPj∇D ·∇µ−DPj∇Pi ·∇µdV (2.104)

Mi j =
1
c2

∫
Ωe

DPiPj(1−∇µ ·∇µ)dV (2.105)

We now discuss the phase function µ(x) in more detail. First, we note that the series expansions for the
trial functions (the ith term is given by equation (2.99)), assume an outwardly propagating wave. The exact
solution from which these trial functions are derived involves a source point for the wave. We denote the
distance from that source point to a point on the base surface by a. The phase function is then defined by

µ(x) = r−a (2.106)

In spherical coordinates, the gradient of a function is equal to

∇ f (r,θ,φ) = r̂
∂ f
∂r

+
1
r

∂ f
∂φ

φ̂+
1

rsin(φ)
∂ f
∂θ

θ̂ (2.107)

Since the expression for µ(x) depends only on r, we have

∇µ(x) = r̂ (2.108)

Thus, ∇µ(x) ·∇µ(x) = 1. This implies that when the boundary defining the infinite elements is a spherical
surface, the mass matrix from equation (2.105) is identically zero. This makes sense, since it ensures
that the modes are purely outgoing, and that there are no standing waves. Since a numerical integration
of equation (2.105) will never come out identically zero, the question then becomes whether to include
this numerical mass in the time integration, or whether to neglect it completely from the outset. This has
important implications in the stability of the time integration, as outlined in.82

In terms of discretizing the infinite domain, infinite elements can be classified into 2 main approaches:
the separable approach, and the mapped approach. In the separable approach, the exterior domain is assumed
to be in a separable coordinate system, such as spherical or spheroidal. In the mapped approach, the nodes
on the exterior boundary are mapped into parent elements using a special mapping functions that map the
infinite domain into a finite master element domain. The mapped approach is advantageous because it
allows a more arbitrary placement of nodes on the exterior surface. The separable approach requires the
exterior nodes to conform to a specific boundary, and thus this approach places more restrictions on the
mesh generation process.
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2.6.1 Infinite Element Shape Functions

In our work, we have chosen the mapped approach due to its flexibility in mesh generation. The integrals
in equations (2.103), (2.105), and (2.104) are over an infinite domain, Ωe. In order to perform numerical
integration of these integrals, we first must map onto a unit master element, as in standard finite elements.
The mapping is as follows

x =
N

∑
j=1

M j(s, t,v)x j (2.109)

where x is a point in the infinite domain, x j are the coordinates of the mapping points, s, t define the master
coordinates of the base plane of the infinite element (which lies on the exterior surface of the acoustic mesh),
and v is the master coordinate in the infinite direction. If we consider a point on the exterior surface, and its
radial point ai, then the master coordinate along the radial edge emanating from this point is given by,

vi = 1−2ai/ri (2.110)

Equivalently,

ri−ai = ai
1+ vi

1− vi
(2.111)

Where ri is a radial distance from a virtual source point (or virtual origin). Each node on the infinite element
boundary may have a source point, as illustrated in Figure (13). Generally, the source point is positioned
to ensure that rays are normal to the surface.79, 83 The mapping ensures that as the element coordinate v
approaches 1, the physical radial coordinate, r approaches infinity; thus mapping an infinite space onto a
unit element.

mesh
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acoustic
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Figure 13. Infinite Element Radial Mapping. Each node on the infinite
element boundary may have an origin, Oi, (called a virtual source point)
and an effective nominal radius, ai. The source point is chosen to ensure
that rays are normal to the surface. For a spherical boundary, all virtual
source points are at the center of the sphere.

The virtual source point can provide an orthogonal basis in the radial direction. For non-spherical
meshes, one virtual source point is needed for each point on the infinite element boundary to ensure that
the radial expansions are normal to the surface and orthogonal to the surface shape functions, Si(s, t). This
permit writing the mapping function as a product of spatially separated terms, Mi(s, t,v) = Si(s, t)Ri(v).
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This orthogonality is also necessary to ensure that the mass matrix remains positive semi-definite. The mass
matrix (from equation (2.105)) includes the term 1−∇µ ·∇µ. The magnitude of the gradient term, ∇µ, is
exactly 1.0 when the source is normal to the surface. It is greater than one otherwise, which leads to an
indefinite matrix, and can produce instability in dynamic integration.

Various methods can be used to generate the source point location. Two methods are used in Sierra/SD.
The simplest travels down the normal vector by a fixed distance b, where b is the dimension of the minor
axis. The second method provides an offset that intersect a plane normal to the vector and passing through
the origin of the ellipsoid. These two methods are illustrated in Figure (14).

Figure 14. Methods of Locating Source Point. On the left, the source
point is located on the surface normal, a distance b into the structure,
where b is the minor axis dimension. On the right, the source point is
located along the surface normal such that it intersects a plane normal to
the vector, and containing the ellipsoid centroid.

The radial point a is now interpolated over the base of the infinite element, to give

a(s, t) =
N

∑
i=1

aiSi(s, t) (2.112)

where Si(s, t) is the implied surface shape function of the base element on the exterior surface. In this way,
tetrahedral or hexahedral elements may be used in the acoustic mesh. For the infinite elements, the only
difference is the surface shape functions Si(s, t). The radial interpolation is independent of the underlying
finite element. The mapping functions M j(s, t,v) given in equation (2.109) are constructed as tensor products
of the surface shape functions Si(s, t) and radial basis mapping functions. The radial basis mapping functions
are typically defined to be linear functions that map the finite master domain into the infinite domain. These
functions are given as,

m1(v) =
2v

v−1

m2(v) =
1+ v
1− v

(2.113)

Thus, when v = −1, we have that m1(v) = 1 and m2(v) = 0. When v = 1, we have m1(v) = −∞ and
m2(v) = ∞. In this way, the infinite domain is mapped to a finite domain.

The mapping functions M j(s, t,v) are defined as tensor products of the surface shape functions Si(s, t)
with the radial mapping functions from equation (2.113). For example, for an 8-node hex, the surface shape
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functions are defined as,

S1(s, t) =
(1+ s)(1+ t)

4

S2(s, t) =
(1+ s)(1− t)

4

S3(s, t) =
(1− s)(1+ t)

4

S4(s, t) =
(1− s)(1− t)

4
(2.114)

Then, the 8 functions Mi(s, t,v) can be constructed simply by crossing each Si(s, t) from equation (2.114)
with an m j(v) from equation (2.113).

Equation (2.111) can then be used to compute the phase function µ(x) at an arbitrary point

µ(x) = r−a =
N

∑
i=1

(r−ai)Si(s, t) =
N

∑
i=1

aiSi(s, t)
1+ v
1− v

= a(s, t)
1+ v
1− v

(2.115)

With µ(x) defined, we now turn attention to defining P(x). The lth shape function P(x) is defined as

Pl(x) =
1
2

Si(s, t)(1− v)Q j(v) (2.116)

where Q j(v) is a polynomial in a single variable. Various choices of Q j(x) have been investigated, including
Lagrangian,79, 80 Legendre,84 Jacobi,85 and rational (integrated Jacobi).86 Lagrangian shape functions result
in very poorly conditioned infinite element matrices. The other three choices all appear to give acceptable
levels of conditioning. Dreyer85 showed that the Jacobi polynomials in general give a better condition than
the Legendre polynomials. Regardless of the choice for Q(x), equations (2.109) and (2.116) imply that
P(x) will be a function of the master element coordinates r,s, t, and thus can be integrated over the master
element.

The function D(x) is defined as

D(x) =
(

1− v
2

)2

(2.117)

Now that we have defined P(x), µ(x), and D(x), in terms of the master element coordinates r,s, t, the
integrals in equations (2.103), (2.104), and (2.105) can all be evaluated by standard Gaussian quadrature
over the master unit element (either hex or tet).

2.6.2 Computation of solution at far-field points

After the solution to the acoustic problem is complete, the values of the coefficients in the expansion of
equation (2.101) are known. The next step is then to compute the solution at far-field points outside of the
acoustic mesh. We consider two cases below, one where the polynomial functions P(x) in equation (2.99)
is a Lagrangian shape function, and the other where P(x) is a more general polynomial (like a Legendre
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or Jacobi polynomial). In the former case, the functions P(x) are associated with particular nodes having
values of 1 at the node and 0 at the other nodes. In the latter case, this property does not hold.

We assume that we wish to compute the solution at a node d that is at a location xd , and a radial distance
r = ||xd || from the origin. This point is located on a radial line with a corresponding radial point a. Thus,
for this point we have µd = r−a., We have

p(xd ,ω) =
N

∑
i=1

q j(ω)Pj(xd)e−ikµd (2.118)

Note that ’N’ in this case is the number of infinite element basis functions within the infinite element that
includes the point d. In the case of Lagrangian polynomials, we have the property that the function is equal
to 1 at the node of interest and is equal to 0 at the other nodes. Thus, in the case that the point xd coincides
with a node in the infinite element, we have the expression

p(xd ,ω) = qd(ω)e−ikµd (2.119)

where qd(ω) is the infinite element shape function corresponding to node d. Equivalently, we have

qd(ω) = p(xd ,ω)eikµd (2.120)

Thus, the pressure at the node d is equal to the corresponding value of the coefficient of the infinite element
expansion corresponding to that node, multiplied by the factor e−ikµd , where µd is equal to the distance
(along the radial line) from the boundary of the acoustic domain to the node d.

If we take the inverse Fourier transform of equation (2.120), we get

qd(t) = p(xd , t +
d
c
) (2.121)

Thus, the pressure time history at node d is equal to a time-shifted value of the infinite element degree of
freedom qd(t) corresponding to node d. This makes physical sense in that it would take the wave additional
time equal to d

c to reach the point d.

Next we consider the case when P(x) is not a Lagrangian polynomial. In this case, the point d could not
be associated with any particular node. In this case, we still have the relation

p(xd ,ω) =
N

∑
i=1

q j(ω)Pj(xd)e−ikµd (2.122)

except in this case, the polynomials P(x) do not necessarily vanish at d. Thus, again bringing the exponential
to the other side of the equation, we have

p(xd ,ω)eikµd =
N

∑
i=1

q j(ω)Pj(xd) (2.123)

Taking inverse Fourier transforms, we arrive at the result

p(xd , t +
d
c
) =

N

∑
i=1

q j(t)Pj(xd) (2.124)

Since all quantities on the right hand side of equation (2.124) are known after the finite/infinite element
solution is complete, we can post-process to compute the pressure at the field point xd .
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2.7 Point Acoustic Sources

Point acoustic sources are common in acoustic modeling, and we provide some capability for doing this
in Sierra/SD. Here we describe the theory behind this implementation. The theory of point sources87, 53

in acoustics is typically formulated by considering a pulsating sphere of radius R, centered at the point
xs = (x,y,z). Upon taking the limit as the radius of the sphere goes to zero, one obtains the equation for an
acoustic point source. The distance from the center of the sphere to a point in the domain is x− xs, where x
is the vector from the center of the sphere. If the source is centered at the origin, then xs = 0 and the norm
of x is the distance to that point in the domain. In the remaining discussion, we will assume for simplicity
that xs = 0. In the case that xs 6= 0, the expressions below can be modified by replacing x with x− xs.

We consider a point source that is injecting mass into the acoustic domain at a volume velocity rate
(mass per unit time)

ṁs(t) = ρQs(t) (2.125)

where ṁs is the mass per unit time of fluid that is being injected into the domain, ρ is the density of the fluid,
and Qs(t) is the volume velocity of the fluid that is entering the acoustic domain. More on this will be given
later in the section on Lighthill’s approach, and its connection with the point source.

In order to compute the noise resulting from a point source, the wave equation is augmented with a right
hand side term53

1
c2 p̈−∇

2 p = m̈s(t)δ(x− xs) = m̈s(t)δ(x) (2.126)

where p is the acoustic pressure at a point in the domain, c is the speed of sound, and ρ is the fluid density.
We note that the volume velocity can also be written as the time derivative of the volume in the source

Qs(t) =
dV
dt

(2.127)

where V is the volume enclosed by the source. Equation (2.127) is valid for a spherical source enclosing a
volume V , but in the case of a point source we shrink the radius to zero. The volume velocity, Qs, is also
sometimes referred to as the source strength. It is simply the integral of the normal component of surface
velocity over the spherical surface of the source. Since the surface velocity is the same everywhere on the
surface of the sphere, the source strength is

Qs =
∫

S
vndS = vn

∫
s
dS = 4πa2vn (2.128)

where a is the radius of the sphere, and vn is the normal component of velocity on the surface. By considering
the volume increase for a pulsating sphere, it is easy to see that equations (2.127) and (2.128) are the same.

We note that in the Sierra/SD implementation of acoustics, we actually use the time derivative of pressure
rather than the pressure directly. We also scale the equation by density, since this is needed when the fluid
properties are not constant. Thus, we would modify equation (2.126) as follows

1
ρc2 ψ̈− ∇2ψ

ρ
=

ṁs(t)
ρ

δ(x− xs) =
ṁs(t)

ρ
δ(x) (2.129)

where p = ψ̇. Equivalently, this gives

1
ρc2 ψ̈− ∇2ψ

ρ
= Qs(t)δ(x− xs)δ(x) (2.130)
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In the frequency domain, equation (2.126) is typically written as

(∇2 + k2)φ =−4πAδ(x) (2.131)

where A is referred to as the amplitude of the source. The solution to equation (2.131) in an unbounded
domain can be shown to be the following

φ =
A
r

e j(ωt−kr) (2.132)

where r = x−xs is the distance from the center of the source to the point in the domain, the circular frequency
of the wave, k = ω

c is the wavenumber.

Assuming a time-harmonic expression for Qs(t) = Qeiωt , and substituting this and equation (2.132) into
equation (2.126), it follows that the following relation exists between Q and A

Q =
−4πA

ρ
(2.133)

Thus, equation (2.131) can also be written in terms of Q as follows

(∇2 + k2)φ = ṁs(t)δ(x) (2.134)

Consequently, we have shown that in both time (equation (2.126)) and frequency (equation (2.134)) we can
represent the point source as a volume velocity amplitude times a delta function.

A finite element formulation of the previous equation can be constructed as usual, by multiplying the
previous equation by a test function, and integrating by parts. We note that the domain of integration must
include the point xs, the location of the point source. Also, we note that the integration against the delta
function δ(x−xs) is actually a duality pairing, rather than an integral, since the integral of a delta function is
not defined. In what follows, we assume that the point xs lies on a node in the finite element mesh. This will
facilitate the modeling, since we will typically define the point source on a nodeset or nodelist consisting of
a single node.

Denoting by Vf (Ω f ) the function space for the fluid, the weak formulation can be written as follows.
Find the mapping ψ : [0,T ]→Vf (Ω f ) such that

∫
Ω

ψ̈

ρc2 φdx+
∫

Ω

∇ψ ·∇φ

ρ
dx =−

∫
∂Ωn

u̇nφds+Qs(t)

∀φ ∈ Vf (Ω f ), where u̇n is the prescribed velocity on the Neumann portion of the fluid boundary. We note
that the first term on the right hand side is a surface excitation force, and thus only contributes nonzero terms
on nodes that lie on the surface

∫
∂Ωn

. The second term comes from the point source, and only contributes a
nonzero term on the node where the point source is located.

Inserting a finite element discretization φ(x) = ∑
N
i=1 φiNi(x) into equation (2.135) results in the system

of equations
Mψ̈+Kψ = fa, (2.135)

where N is the vector of shape functions, M =
∫

Ω f
1

ρc2 NNT dx is the mass matrix, K =
∫

Ω f
∇N·∇NT

ρ
dx is

the stiffness matrix, and fa =
∫

∂Ωn
u̇nNT dx+Qs(t) is the external forcing vector from Neumann boundary

conditions.

If Q = dV
dt is computed with a void element in Presto, equation (2.135) can be used to compute the right

hand side term and the corresponding acoustic response.
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3 Sierra/SD Elements

Structural dynamics is a rich and extensive field. Finite element tools such as Sierra/SD have been used for
decades to describe and analyze a variety of structures. The same tools are applied to large civil structures
(such as bridges and towers), to machines, and to micron sized structures. This has necessarily led to a
wealth of different element libraries. Details of these element libraries are presented in this section. For
information on the solution procedures that tie these elements together, please refer to section 1.

3.1 Isoparametric Solid Elements. Selective Integration

The following applies to any solid isoparametric element, but is implemented in the code on elements with
linear shape functions (such as hex8 or wedge6). This discussion addresses calculation of relevant operators
on the shape functions and eventual integration into the stiffness matrices. 14

3.1.1 Derivation

We begin with the separation of the strain into deviatoric and dilitational parts so that their contributions to
the stiffness matrix can be computed separately. This is part of the strategy for avoiding over stiffness with
respect to bending.

The strain energy density in the case of an isotropic, linearly elastic material is:

p =
1
2
(2Gε+λtr(ε)I)• ε (3.1)

with some re-arrangement, this can be shown to be:

p = Gε̂• ε̂+
1
2

β(tr(ε))2 (3.2)

where ε̂ = ε− 1
3 tr(ε)I.

Having separated the part of the strain energy density due to deviatoric part of the strain from the part
of the strain energy density due to the dilitational part of the strain, we shall integrate them separately. First,
we must determine how to express the strains in terms of nodal degrees of freedom.

We know that the deformation field is linear in the nodal degrees of freedom and that the displacement
gradient is also, so we should be able to expand each of those quantities as follows.

Let Pj be the node associated with the jthe degree of freedom and let s j be the direction associated with
that degree of freedom. The displacement field is:

~u(x) = ÑPj(x)uPj
s j~es j (3.3)

where summation takes place over the degree of freedom j.

14This development is based on work by Dan Segalman.
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Similarly, the displacement gradient is:

~∇~u(x) = (
∂

∂xk
)ÑPj(x)uPj

s j~es j~ek (3.4)

We now define the shape deformation tensor W j corresponding to the j the nodal degree of freedom:

W j(x) = (
∂

∂uPj
s j

)~∇~u(x) (3.5)

which, with Equation 3.4 yields:

W j(x) = (
∂

∂xk
)ÑPj(x)~es j~ek (3.6)

The symmetric part of this tensor is:

S j(x) =
1
2
(W j(x)+W j(x)T ) (3.7)

and the strain tensor is
ε(x) = S j(x)uPj

s j (3.8)

From the above, we construct the dilitational and deviatoric portions of the strain in terms of the nodal
displacement components:

tr(ε(x)) = b j(x)uPj
s j (3.9)

where
b j(x) = tr(S j(x)) (3.10)

Similarly,

ε̂(x) = B̂ j(x)uPj
s j (3.11)

where

B̂ j(x) = S j(x)− 1
3

b j(x)I (3.12)

The stiffness matrix is evaluated using the constitutive equation (Equation 3.2) and the following defini-
tion:

Km,n =
∂2

∂uPm
sm ∂uPn

sn

∫
volume

p(x)dV (x) (3.13)

This plus our expressions for strain in terms of the nodal degrees of freedom yield us the following expres-
sion for element stiffness:

Km,n = G
∫

volume
(B̂m(x))T • B̂n(x)dV (x)

+β

∫
volume

bm(x)bn(x)dV (x) (3.14)
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3.2 Implementation

From the above it is seen that once the shape deformation tensor W j is found, the rest of the calculation
follows naturally. The calculation of the components of that tensor is presented here. The components of
W j are

W j
mn = ~em ·W j ·~en (3.15)

= δm,s j(
∂

∂xn
)ÑPj(x) (3.16)

The partial derivative ( ∂

∂xn
)ÑPj(x) is calculated from

(
∂

∂xn
)ÑPj(x(ξ)) = (

∂

∂ξα

)NPj(ξ)J−1
α,n (3.17)

where

Jm,γ =
∂

∂ξγ

xm(ξ) (3.18)

and
N(ξ) = Ñ(x(ξ)) (3.19)

The issue of selective integration in the elements is discussed in section 3.3. The formulation discussed
there applies to all the isoparametric solid elements.

3.3 Integration of Isoparametric Solids

A selective integration method for isoparametric solids is described that satisfies the standard conditions,
including the patch test, and at the same time accommodates anisotropic materials.15

We begin with the definition of the strain vector. For computational convenience define the stress and
strain vectors as

s =



σ11
σ22
σ33
σ23
σ13
σ12


(3.20)

and,

ν =



ε11
ε22
ε33

2ε23
2ε13
2ε12


. (3.21)

15 This is a transcription of Dan Segalman’s framemaker document, “IsoInt.frm”.
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These are related through the matrix of elastic constants.

s =Cν (3.22)

We now take a look at virtual work, since it is from virtual work that the stiffness matrix is derived.

δW =
∫

V
sT

δνdV =
∫

V
ν

TCδνdV (3.23)

If we select the above volume to be that of an element and use the strain-displacement matrices associated
with each nodal degree of freedom,

ν(x) = ∑
j

B j(x)u j (3.24)

where u j is the jth nodal degree of freedom, the virtual work becomes

δW = u jδuk

∫
V

B j(x)TCBk(x)dV (3.25)

Since the element stiffness matrix is defined by

δW = u jδKi j (3.26)

we conclude that
Ki j =

∫
V

B j(x)TCBk(x)dV (3.27)

The next step is to decompose the strain-displacement vectors into deviatoric and dilatational components.

B j(x) = BD
j (x)+BV

j (x) (3.28)

where,

BV
j (x) = d j(x)



1
1
1
0
0
0

 (3.29)

and 3d j(x) is the sum of the first three rows of B j(x). BD
j (x) is defined by Equation 3.28. Substitution of

Equation 3.28 into Equation 3.27 yields:

Ki j =
∫

V
BD

j (x)
TCBD

k (x)dV +
∫

V
BV

j (x)
TCBV

k (x)dV + · · ·

+
∫

V
BV

j (x)
TCBD

k (x)dV +
∫

V
BD

j (x)
TCBV

k (x)dV (3.30)

For isotropic materials, the deviatoric and dilatational portions of the strain are orthogonal with respect to the
matrix of material constants, so the last two integrals in the above equation are zero. It is sometimes common
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to integrate the contributions of each to the stiffness matrix using separate strategies. Such approaches can
produce elements with slightly less susceptibility to parasitic shear. Such an approach does not work for
elements of anisotropic material, so the following approach has been developed.

Uniform Strain-Displacement Matrices. At this point it is useful to define the element averaged strain
displacement matrices.

B̄k =
1
V

∫
V

Bk(x)dV (3.31)

For hex elements, these are the strain-displacement matrices of the Flanagan and Belytschko, and are known
as “uniform strain” elements. Elements formed by the above strain/displacement matrices are very “soft”,
having properties similar to elements formed by single point integration. Hex elements of this sort display
extraneous zero-energy modes. In what follows, we consider linear combinations of this strain-displacement
matrix formulation with the consistent formulation presented in Equation 3.24.

The uniform strain matrices are also separable into dilatational and deviatoric parts.

B̄k = B̄V
k + B̄D

k (3.32)

Mixed Integration. This selective integration method builds on one presented by Hughes.88 We can achieve
the effect of softening elements by forming the strain displacement matrices from combinations of the
consistent strain-displacement and the uniform strain displacement matrices.

B̂k(x) = αB̄V
k +(1−α)BV

k (x)+βB̄D
k +(1−β)BD

k (x) (3.33)

(14) Note that for all values of α and β, the above correctly captures uniform strains. It is in how the
non-uniform strains contribute to the stiffness matrix that the particular values of α and β make a difference.
By setting values of α and β according to the following table, we recover the standard integration forms:

α β Integration
1 1 Flanagan and Belytschko
0 0 Full Integration
1 0 Selective Integration

We note that setting α = 1 and using an intermediate value of β, we can achieve performance almost as
good as that of the Flanagan and Belytschko element but without admitting hour-glass modes.

3.4 Mean Quadrature Element with Selective Deviatoric Control

In this section we discuss the implementation of the mean quadrature element in Sierra/SD. This work is a
result of a collaboration with Sam Key.89

We first examine the element stiffness matrix resulting from a fully integrated element

K =
∫

V
BTCBdV (3.34)



UNCLASSIFIED- UNLIMITED RELEASE 131

where K is the stiffness matrix, V is the volume of the element, B is the standard strain-displacement matrix,
and C is the matrix of material constants. When implemented in the standard way, this element behaves very
poorly for nearly-incompressible materials, and is too stiff even on materials with moderate Poisson ratios.

A standard approach for softening the element formulation in the presence of nearly incompressible
materials is to replace the matrix B with its mean quadrature counterpart, B̃,

B̃ =
∫

V
BdV (3.35)

This alleviates problems associated with nearly incompressible materials, but the resulting stiffness matrix
exhibits hourglass modes. These modes can be removed either through hourglass control methods, or by
adding in some of the missing deviatoric components. In the approach described here, we use the latter
method. We note that both B and B̃ can be decomposed into their volumetric and deviatoric components, i.e.

B̃ = B̃V + B̃D (3.36)

B = BV +BD

With these decompositions, we define

B̂ = B̃V + B̃D + sd(BD− B̃D) (3.37)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean quadrature
element. When sd = 1, the element corresponds to mean quadrature on the volumetric part, but with full
integration on the deviatoric component.

With this new definition of B̂, we can define the stiffness matrix for this element as

K =
∫

V
B̂TCB̂dV (3.38)

3.5 Bubble Element

Low order finite elements tend to behave poorly when subjected to bending loads. The bubble hex elements
have been shown to give much better bending performance, without increasing the number of degrees of
freedom in the element,90,91.92 In this section we give a brief review of the theory behind this element.

The representation of displacement at the element level in the standard hex8 element is

u =
8

∑
i=1

uiNi(ξ) = uTN (3.39)

where u is the element displacement, Ni is the ith shape function, N is the vector of shape functions, and ξ is
the vector of reference element coordinates. The bubble element augments the standard finite element basis
functions with additional bubble functions. The representation of displacement at the element level for the
bubble element takes the form

u =
8

∑
i=1

uiNi(ξ)+
3

∑
i=1

aiPi(ξ) = uTN+aTP (3.40)
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where Pi(ξ) are the bubble functions, P is the vector of bubble functions, ai are the unknown coefficients for
the bubble functions, and a is the vector of unknown coefficients for the bubble functions. The corresponding
expression for element strain is given as

ε = Bu+Ga (3.41)

where B and G are the appropriate derivatives of the shape functions. We note that B is a 6x24 matrix,
whereas G is a 6x9 matrix. See,9091 for the exact forms of these matrices.

The corresponding element stiffness and load terms can be assembled into a 2x2 system[
K ET

E H

][
u
a

]
=

[
f
0

]
(3.42)

where K =
∫

e BTCBdV is the 24x24 element stiffness matrix corresponding to standard element shape func-
tions, H =

∫
e GTCGdV is the 9x9 stiffness matrix corresponding to bubble shape functions, E =

∫
e GTCBdV

is the 9x24 matrix corresponding to products of bubble and standard shape functions, and f is the element
load vector. Since the bubble unknowns a are local to each element, they can be condensed out, which yields
a modified element stiffness matrix

K̂ = K−ET H−1E (3.43)

Note that K is still a 24x24 matrix.

It has been shown that the bubble hex element does not pass the patch test unless a correction is made
to the element formulation. There are two options for this correction. The first90 involves evaluating the
matrix G at the centroid of the element rather than at the Gauss points. The second approach91 consists of
subtracting from the matrix G its average value. Both approaches yield an element that passes the patch test,
and thus convergence is assured.

In Sierra/SD, we have taken the second approach. A new G matrix is defined, Ĝ, that is constructed by
subtracting the average value of G from G.

Ĝ = G− 1
Ve

∫
e
GdV (3.44)

Then, we simply replace G with Ĝ in the above equations. We note that, in the implementation of this
element in Sierra/SD, it was found that after implementing the correction described above, the element
passed the patch test. Without the correction, the element failed all of the patch tests.

With the bubble element, the stresses vary through the thickness. In order to compute the stresses at
any particular point within the element, we need to recover the strains. These are given in equation 3.41.
However, an additional task is to compute the bubble degrees of freedom, since only the displacement
degrees of freedom are calculated during the solution procedure. From equation 3.42, the bubble degrees of
freedom can be computed from the displacements as

a = H−1Eu (3.45)

where u is the element displacement vector. Given a, we can then compute the strains from equation 3.41,
and then the stresses can be computed in the standard way.
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3.5.1 Nonlinear analysis with bubble element

The bubble element can be used in nonlinear analysis. A brief description of the procedure is given in.91

More details will be given here. In,91 an assumed strain approach was used rather than the assumed dis-
placement method, but the two reduce to the same procedure.

We will give the necessary modifications for a nonlinear static analysis. The equations that need to be
satisfied are

F int(u,α) = Fext (3.46)

More specifically, this breaks down to two separate equations

F int
1 =

∫
Ω

BT
σdΩ = Fext (3.47)

F int
2 =

∫
Ω

GT
σdΩ = 0 (3.48)

(3.49)

The stress is given by σ =Cε, where ε is given by equation 3.41.

Next, we expand the expressions for internal force in a Taylor series, and truncate after the first two
terms. In the following, the quantities u and α denote the unknowns, and û and α̂ represent the current
iterates of displacement and bubble unknowns.

F int
1 (u,α)≈ Fint

1 (û, α̂)+
∂Fint

1
∂u

u+
∂Fint

1
∂α

α (3.50)

F int
2 (u,α)≈ Fint

2 (û, α̂)+
∂Fint

2
∂u

u+
∂Fint

2
∂α

α (3.51)

(3.52)

We define

KT =
∂F int

1
∂u

(3.53)

ET =
∂F int

1
∂α

(3.54)

HT =
∂F int

2
∂α

(3.55)

(3.56)

where the subscript T denotes tangent matrices that are computed at the current configuration. Using these
definitions and substituting equations 3.52 into equations 3.49, we obtain[

KT (ET )T

ET HT

][
∆u
∆a

]
=

[
Resu
Resα

]
(3.57)
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where

Resu = Fext −F int
1 (û, α̂) (3.58)

Resα =−F int
2 (û, α̂) (3.59)

(3.60)

More detailed expressions for the tangent matrices will now be given. We note that, for example, in
equation 3.49, both σ and the matrix B depend on displacement u and bubble unknowns α. Thus, the chain
rule is needed to compute the following expressions.

KT =
∂
∫

Ω
BT σdΩ

∂u
=

∫
Ω

∂BT

∂u
σdΩ+

∫
Ω

BT ∂σ

∂u
dΩ (3.61)

ET =
∂
∫

Ω
BT σdΩ

∂α
=

∫
Ω

∂BT

∂α
σdΩ+

∫
Ω

BT ∂σ

∂α
dΩ (3.62)

HT =
∂
∫

Ω
GT σdΩ

∂α
=

∫
Ω

∂GT

∂α
σdΩ+

∫
Ω

GT ∂σ

∂α
dΩ (3.63)

(3.64)

In each of these expressions, the first term on the right hand side represents a geometric stiffness term,
whereas the second term represents the material stiffness term. Next, in order to evaluate terms like ∂BT

∂u and
∂BT

∂α
, we use the deformation gradient. We use the notation x = u+X, where x is the current configuration,

u is the displacement, and X is the initial configuration.

e =
1
2
(FT F− I) (3.65)

B =
∂ε

∂u
= F

∂F
∂u

(3.66)

∂B
∂u

= F
∂2F
∂u2 +

∂F
∂u

∂F
∂u

=
∂F
∂u

∂F
∂u

(3.67)

(3.68)

where the last identity follows from the fact that ∂2F
∂u2 = 0. This can be seen from the following relations.

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+α
T DP

DX
(3.69)

∂F
∂u

=
DN
DX

(3.70)

∂2F
∂u2 = 0 (3.71)

(3.72)
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Similarly, we can construct these equations for the bubble functions

e =
1
2
(FT F− I) (3.73)

G =
∂ε

∂α
= F

∂F
∂α

(3.74)

∂G
∂α

= F
∂2F
∂α2 +

∂F
∂α

∂F
∂α

=
∂F
∂α

∂F
∂α

(3.75)

(3.76)

where similar identities have been used

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+α
T DP

DX
(3.77)

∂F
∂α

=
DP
DX

(3.78)

∂2F
∂α2 = 0 (3.79)

(3.80)

For the cross terms, we have

e =
1
2
(FT F− I) (3.81)

B =
∂ε

∂u
= F

∂F
∂u

(3.82)

∂B
∂α

= F
∂2F

∂u∂α
+

∂F
∂u

∂F
∂α

=
∂F
∂u

∂F
∂α

(3.83)

(3.84)

where, again we justify that the second term vanishes as follows

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+α
T DP

DX
(3.85)

∂F
∂u

=
DN
DX

(3.86)

∂2F
∂u∂α

= 0 (3.87)

(3.88)

In a similar manner as was done for the linear element, the bubble degrees of freedom can be condensed
from equations 3.60. This results in the equation

(KT −ET
T H−1

T ET )∆u = Resu−ET
TH−1

T Resα (3.89)

Thus, the full tangent operator for the bubble element is given by

KT −ET
T H−1

T ET (3.90)
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the internal force is given by
F int

1 (û, α̂)−ET
T H−1

T F int
2 (û, α̂) (3.91)

and the residual is given by two terms
Resu−ET

T H−1
T Resα (3.92)

These equations fully describe the nonlinear analysis of the bubble element.

3.6 Quadratic Isoparametric Solid Elements

Quadratic elements (elements with bilinear or higher order shape functions) such as the Hex20 and Tet10
are naturally soft and do not need to be softened by positive values of G and β (see sections 3.1 and 3.3 for
definitions of G and β.) Therefore, G=0 and β=0 are good values for such elements.

3.6.1 Shape Functions and Gauss Points

The shape functions and Gauss points for Hex20 elements follow very standard ordering. The nodal ordering
(and shape functions) follows the ordering in the exodusII manual. Gauss points are input and output using
the ordering developed by Thompson 93. Internally, the Gauss points are located at element coordinates
(and order) shown in Table 3.

3.7 Wedge elements

3.7.1 Shape Functions

The shape functions are given explicitly as in 88. These are provided as bi-linear polynomials in r, s, t,
and ξ, where r and s are independent coordinates of the triangular cross-subsections, t = 1− r− s, and ξ

is the coordinate in the third direction. For our purposes, it is necessary to expand the shape functions as
polynomials in r, s, and ξ:

Nk = Ak
0 +Ak

1r+Ak
2s+Ak

3ξ+Ak
4rξ+Ak

5sξ (3.93)

The shape functions and the coefficients are given in the following table:

Shape Function A0 A1 A2 A3 A4 A5

N1 =
1
2(1−ξ)r 1

2 - 1
2

N2 =
1
2(1−ξ)s 1

2 −1
2

N3 =
1
2(1−ξ)t 1

2 - 1
2 - 1

2 - 1
2

1
2

1
2

N4 =
1
2(1+ξ)r 1

2
1
2

N5 =
1
2(1+ξ)s 1

2
1
2

N6 =
1
2(1+ξ)t 1

2 - 1
2 - 1

2
1
2 - 1

2 - 1
2

3.7.2 Quadrature

Three reasonable quadratures for wedges that come to mind are indicated in the following table:
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number label suffix X Y Z
1 111 0 0 0
2 112 0 0 A
3 110 0 0 -A
4 121 0 A 0
5 122 0 A A
6 120 0 A -A
7 101 0 -A 0
8 102 0 -A A
9 100 0 -A -A
10 211 A 0 0
11 212 A 0 A
12 210 A 0 -A
13 221 A A 0
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 -A 0 0
20 012 -A 0 A
21 010 -A 0 -A
22 021 -A A 0
23 022 -A A A
24 020 -A A -A
25 001 -A -A 0
26 002 -A -A A
27 000 -A -A -A

Table 3. Hex20 Gauss Point Locations. The constant
A=0.77459666924148. The unit element is 2x2x2, with a volume of
8 cubic units.
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No. Points r s ξ

1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

1/3 1/6 -1/
√

3
1/6 1/3 -1/

√
3

1/6 1/6 1/
√

3
1/3 1/6 1/

√
3

1/6 1/3 1/
√

3

3.8 Tet10 elements

The degree 2 integration rule (see for example Appendix 3.1 of 88) based on values at the four vertices is
used for the stiffness matrix. The mass matrix depends on integrals of polynomials two degrees higher than
the stiffness matrix. Higher order integration is required to determine a consistent (exact) mass matrix than
is required for the stiffness matrix. The 16-point integration comes from 94. (Using 4-point integration to
try to estimate the mass matrix of a natural element resulted in a 30 by 30 mass matrix with several zero
eigenvalues.) A 16-point integration with degree of exactness 6 from 94 is used for the mass matrices.
However cubature rules of degree two or four 95 suffice for the Tet4 and Tet10 respectively.

3.9 Calculating shape functions and gradients of the Hex20 element

Using a 3D Pascal’s triangle, we can construct 20 polynomials of the form,

pi = ε
ri
1 ε

si
2 ε

ti
3

where the ri, si and ti (i = 1, . . . ,20) are integers satisfying,

r2
i + s2

i + t2
i ≤ 7

These terms may be constructed with the following loop.16

count=0
for I = 0 to 7

for J = 0 to 7
for K = 0 to 7
if Iˆ2 + Jˆ2 + Kˆ2 <= 7

count = count + 1
r(count) = I
s(count) = J
t(count) = K

endif
endfor

endfor
endfor

16 This is how the rst matrix in Hex20.C was created.
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We require 20 shape functions Ni, with i = 1, . . . ,20, that satisfy the conditions that Ni = 1 at node i and Ni =
0 at every other node. This results in 20 equations at each node. Expressing the Ni as linear combinations of
the pi, we can write,

~N = A~p (3.94)

where A is a 20x20 matrix. We want to find the 400 term A−matrix values. For each node, we have 20
equations and there are 20 nodes; so, there are 400 equations for the 400 unknowns. Let~εi denote the natural
coordinate value at the ith node. We have A~p(~ε1) =~e1 ≡ (1,0,0, . . . ,0)T , and, in general, A~p(~εi) =~ei. So,

[~ε1,~ε2, . . . ,~ε20] = [A][~p(~ε1),~p(~ε2), . . . ,~p(~ε20)]

or,
I = AP

or,
A = P−1

This matrix A is the matrix “hc20” in Hex20.C.

Not only can the shape functions be expressed as a linear combination of the pi, but so can the deriva-
tives, ∂~N

∂ε j
, ( j = 1,2,3). Differentiating equation 3.94, we have

∂~N
∂ε j

= A
∂~p
∂ε j

but the ∂~p/∂ε j may be written as a linear combination of the pk via the following three equations.

∂pi

∂ε1
= riε

ri−1
1 ε

si
2 ε

ti
3 (3.95)

∂pi

∂ε2
= siε

ri
1 ε

si−1
2 ε

ti
3 (3.96)

∂pi

∂ε3
= tiε

ri
1 ε

si
2 ε

ti−1
3 (3.97)

while noting that equations 3.95, 3.96 and 3.97 are zero if ri, si, or ti is zero, respectively. We would like to
find the matrix B j with j = 1,2,3 such that,

∂~N
∂ε j

= B j~p.

Evaluating ∂~N/∂ε j and ~p at all 20 nodes, we have,[
∂~N
∂ε j

(~ε1),
∂~N
∂ε j

(~ε2), . . . ,
∂~N
∂ε j

(~ε20)

]
= B j [~p(~ε1),~p(~ε2), . . . ,~p(~ε20)] (3.98)

Matrix equation 3.98 can be inverted to solve for B j with j = 1,2,3. In Hex20.C, AB1 is B1 , AB2 is B2, and
AB3 is B3.

3.9.0.1 Shape Function Ordering: The above method results in elements which satisfy the require-
ments that the evaluation of shape function i on node i is one. However, the implementation does not ensure
compatibility with standard node ordering from exodus. We’ve provided a re-ordering function to ensure
this.
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3.10 Anisotropic Elasticity

Anisotropic elasticity requires special care in the rotation of the matrix of material parameters when those
parameters are given in some coordinate system other that in which the element matrices are calculated. A
derivation of the formulae for rotating those matrices is given in 4.6.

3.11 Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bending d.o.f. (w,θx,θy) and the mem-
brane d.o.f. (u,v,θz) are decoupled. The idea is to obtain the membrane response using Allman’s triangle
and the bending response using the discrete Kirchoff triangular (DKT) element.

3.11.1 Allman’s Triangular Element

Using the formulation given in Ref. 96 and replacing cos(γi j) =
y ji
li j

and sin(γi j) =
−x ji
li j

, we get

u = u1ψ1 +u2ψ2 +u3ψ3 +
1
2

y21(ω2−ω1)ψ1ψ2 +
1
2

y32(ω3−ω2)ψ2ψ3 +
1
2

y13(ω1−ω3)ψ3ψ1 (3.99)

v = v1ψ1 + v2ψ2 + v3ψ3 +
1
2

x21(ω2−ω1)ψ1ψ2−
1
2

x32(ω3−ω2)ψ2ψ3−
1
2

x13(ω1−ω3)ψ3ψ1 (3.100)

The stiffness and mass matrices ([K]AT , [M]AT ) are found using general finite element procedures. Un-
fortunately, a mechanism exists for this element if the deformations are all zero and the rotations are all the
same value. Cook et al.5 have a “fix” for this which has been implemented to avoid undesirable low energy
modes produced by this mechanism.

3.11.2 Discrete Kirchoff Element

As for the DKT97 element, things are not so simple. The nine d.o.f. element is obtained by transforming a
twelve d.o.f. element with mid-side nodes to a triangle with the nodes at the vertices only. This is obtained
as follows. Using Kirchoff theory, the transverse shear is set to zero at the nodes. And the rotation about
the normal to the edge is imposed to be linear. Using these constraints, a nine d.o.f. bending element is
derived (DKT) using the shape functions for the six-node triangle. Unfortunately, the variation of w over
the element cannot be explicitly written. Therefore, the w variation over the element needs to be calculated
before the mass matrix can be obtained.

As stated, the equation for w is not explicitly stated over the element in the derivation by Batoz at al..
Using a nine d.o.f. element, a complete cubic cannot be written, since 10 quantities would be needed to get a
unique polynomial. The strategy taken here is that the stiffness matrix produced using for the DKT element
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DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z -1.405 × 10−2 -1.398 × 10−2 -1.398 × 10−2

θx 3.337 × 10−2 3.337 × 10−2 3.337 × 10−2

θy 3.106 × 10−2 3.089 × 10−2 3.089 × 10−2

θz 0.000 0.000 0.000

Table 4. Comparison of deflections at Node 2

provides reasonable results, and the derivation of the mass matrix is not as critical. So, the equation for w is
taken from Ref. 98, as

w = α1ψ1 +α2ψ2 +α3ψ3 +α4ψ1ψ2 +α5ψ2ψ3 +α6ψ3ψ1 +α7ψ1
2
ψ2 +α8ψ2

2
ψ3 +α9ψ3

2
ψ1 (3.101)

For the AT and DKT elements, the stiffness and mass matrices are derived with the help of Maple. The
consistent mass matrix is derived using “normal” finite element procedures. If a lumped mass matrix is
requested then the mass matrix terms associated with the translation d.o.f. are found in the “normal” sense.
However, mass matrix terms for the rotational d.o.f. are set to 1

125 of the translation terms.

In summary, the code has been written which uses the AT and DKT element use in combination as a shell
element. The stiffness matrices are calculated without complication. The mass matrix for the AT element
is also derived without complication. The mass matrix for the DKT element is derived using an incomplete
polynomial, but the results obtained should not be effected very much.

3.11.3 Verification and Validation

The AT element is verified by comparing calculated results with the results published by Allman in Ref. 96.
The square plate in pure bending and a cantilevered beam with a parabolic tip load are used as verification
examples. The mass matrix is not verified except to note that the mass is conserved in the u,v directions.

The DKT element is validated by using the experimental data published by Batoz et al. in Ref. 97 for
a triangular fin. The first 10 eigenvalues for the triangular fin (cantilever) match very well. In addition, the
DKT element is verified by using a cantilevered beam and matching deflection results at the tip. If ν = 0,
then results should match very closely with Euler-Beam theory results, and they did.

Finally, the AT/DKT element is verified by comparing with published results from Ref. 99. Tables 4
and 5 show that our elements match exactly with ABAQUS to the number of digits shown. The first column
is the result produced by Ertas et al., the second column is the result produced by ABAQUS, and the third
column is the result produced by Sierra/SD using this DKT/AT element.
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DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949 × 10−2 1.955 × 10−2 1.955 × 10−2

θx 3.363 × 10−2 3.363 × 10−2 3.363 × 10−2

θy -2.686 × 10−2 -2.702 × 10−2 -2.702 × 10−2

θz 0.000 0.000 0.000

Table 5. Comparison of deflections at Node 3

3.12 Triangular Shell - Tria3

The triangular shell used most in Sierra/SD is the Tria3 element developed by Carlos Felippa of the Uni-
versity of Colorado in Boulder. This element is very similar to the TriaShell element presented in section
3.11. Full details of the theory behind the element is out of the scope of this document, but details may be
found in references 100, 101 and 102.

3.13 Beam2

This is the definition for a Beam element based on Cook’s development (see pp 113-115 of reference 5).

The beam uses under integrated cubic shape functions. Only isotropic material models are supported.
Torsional affects are accounted for in the axis of the beam. The beam is uniform in area and bending
moments, i.e. they are not a function of position in the beam.

The following parameters are read from the exodus file.17

1. The cross sub-sectional area of the beam (Attribute 1)

2. The first bending moment, I1. (Attribute 2).

3. The second bending moment, I2. (Attribute 3).

4. The torsional moment, Jk. (Attribute 4).

5. The orientation of the beam (Attributes 5, 6 and 7)

The orientation should not be aligned with the beam axis. In the event of an improperly specified
orientation, a warning will be written, and a new orientation selected. The orientation is an x,y,z
triplet specifying a direction. It does not need to be completely perpendicular to the beam axis, nor is
it required to be normalized. The orientation vector, and the beam axis define the plane for the first
bending direction.

17 Beam attribute numbering has changed, due to changes in pre-processors. The original ordering had attributes 2,3,4 associated
with orientation.
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AE/L 0 0 0 0 0 −AE/L 0 0 0 0 0

R1 β 0 −Lβ/2 LR1/2 0 −R1 −β 0 −Lβ/2 LR1/2

R2 0 −LR2/2 Lβ/2 0 −β −R2 0 −LR2/2 Lβ/2

GJ/L 0 0 0 0 0 −GJ/L 0 0

k2 −βL2/3 0 Lβ/2 −LR2/2 0 k4 −βL2/6

k1 0 LR1/2 −Lβ/2 0 −βL2/6 k3

AE/L 0 0 0 0 0

R1 β 0 Lβ/2 −LR1/2

Ri2 0 LR2/2 −Lβ/2

GJ/L 0 0

k2 −βL2/3

k1

Figure 15. nbeam Element Stiffness Matrix

Torsion

As outlined in Blevins,103 the stiffness properties of beam torsion are governed by Jk (Attribute 4), while
the mass properties are derived from the polar moment of inertia, Jpolar = I1 + I2. This representation is
fairly accurate for beams with closed cross sections, but will have significant error for more open sections.
Warping in open sections is not accounted for in this standard beam formulation.

3.14 Nbeam

Beam/bar elements are a major component in many structural Finite Element Models (FEM). It is important
to employ a beam/bar element which includes transverse shear and torsion in addition to axial and bending
stiffness. Additionally, the mass formulation needs to include rotary inertia. The nbeam element is an
implementation of the NASTRAN CBAR element. The stiffness matrix is identical to the CBAR. The
mass matrix is a new formulation to this implementation providing a diagonal mass matrix w/ rotary inertia
included.

The nbeam element stiffness matrix is based on Timoshenko beam theory. A good theoretical description
can be found in [104]. The formulation differs (slightly) in the inertia coupling formulation. The derivation
of this specific form is provided in [105]. The exact form of the stiffness matrix implemented in Sierra/SD
is shown in Figure 15.

The following derived quantities are used depending on the value of I12.

If I12 = 0 If I12 6= 0

β = 0 β = 12EI12
L3

R1 =
12EI1

L3

[
1+ 12EI1

s1AGL2

]−1
R1 =

12EI1
L3

R2 =
12EI2

L3

[
1+ 12EI2

s2AGL2

]−1
R2 =

12EI2
L3
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m′ 0 0 0 0 0 0 0 0 0 0 0
m′ 0 0 0 0 0 0 0 0 0 0

m′ 0 0 0 0 0 0 0 0 0
m′J/A 0 0 0 0 0 0 0 0

m′I2/Az 0 0 0 0 0 0 0
m′I1/Ay 0 0 0 0 0 0

m′ 0 0 0 0 0
m′ 0 0 0 0

m′ 0 0 0
m′J/A 0 0

m′I2/Az 0
m′I1/Ay

Figure 16. nbeam mass matrix

The rest of the quantities are valid for any value of I12.

k1 =
L2R1

4
+

EI1

L

k2 =
L2R2

4
+

EI2

L

k3 =
L2R1

4
− EI1

L

k4 =
L2R2

4
− EI2

L
s1 = Ay/A shear factor

s2 = Az/A shear factor

The nbeam mass matrix is given in Figure 16. The mass quantity m′ is defined as m′ = ρAL/2.

To preserve a diagonal mass matrix for arbitrary beam element orientation, the mass matrix subroutine
provides the calling routine options of diagonal stripping or diagonal summation. The mass matrix will
not be diagonal after transforming to global coordinates under general conditions (off diagonal terms will
be present in the rows corresponding to rotary inertia). If diagonal stripping is chosen, the off diagonal
terms are simply zeroed, restoring a diagonal matrix. If diagonal summation is chosen, the off diagonal
terms are added to the diagonal element and then zeroed. Diagonal stripping slightly reduces the total rotary
mass contributions while diagonal summation slightly increases rotary mass contributions. In the current
implementation, diagonal stripping is assumed and coded. This could be expanded as a user option in the
future.

The user provides the element properties in the Sierra/SD input deck. The required parameters are listed
in Table 6.

The parallel axis theorem is used to account for offsets. The offset vector is defined as a vector from the
bending neutral axis of the beam to the nodal location. All other quantities are derived from the material
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Table 6. Nbeam Parameters

Description Keyword Exodus Attributes
Cross-Sectional Area Area 1
First Bending Moment I1 2
Second Bending Moment I2 3
Cross Inertia I12 N/A
Torsional Moment J 4
Beam Orientation orientation 5-7
Y-axis Shear Area Factor Shear factor 1 N/A
Z-axis Shear Area Factor Shear factor 2 N/A
Offset Vector At 1st Node offset 8-10
Offset Vector At 2nd Node - 11-13

data and the element length.

Torsion

As outlined in Blevins,103 the stiffness properties of beam torsion are governed by Jk, while the mass prop-
erties are derived from the polar moment of inertia, Jpolar = I1+ I2. This representation is fairly accurate for
beams with closed cross sections, but will have significant error for more open sections. Warping in open
sections is not accounted for in this standard beam formulation.

3.15 Nquad - Navy Quadrilateral Shell Element

Many structural components on naval vessels, including the hull, bulkheads and decks are made from plate,
be it steel, aluminum or a composite material. As such, plate and shell elements are essential to any finite
element analysis of ships or submarines. It is important to employ an element that is shear deformable and
can also accommodate orthotropic layers. The nquad is a four-noded isoparametric element that is designed
to be similar to the NASTRAN CQUAD4 element.

The development of the stiffness matrix draws heavily from the plane elasticity and bending formulations
found in 106. The membrane and bending components are decoupled. The membrane stiffness terms are
derived from the integrals in equation 4.156 in 106:

K11
i j =

∫
Ωe

(
C11

∂ψi

∂x
∂ψ j

∂x
+C33

∂ψi

∂y
∂ψ j

∂y

)
dxdy (3.102)

K12
i j = K21

i j =
∫

Ωe

(
C12

∂ψi

∂x
∂ψ j

∂y
+C33

∂ψi

∂y
∂ψ j

∂x

)
dxdy (3.103)

K22
i j =

∫
Ωe

(
C33

∂ψi

∂x
∂ψ j

∂x
+C22

∂ψi

∂y
∂ψ j

∂y

)
dxdy (3.104)
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where the Ci j are the elastic material constants defined in equation 4.137 of 106:

C11 =C22 =
E

1−ν2 C12 =
νE

1−ν2 C33 =
E

2(1+ν

and the ψi are the element shape functions (see equation 4.31 in 106) over the element Ωe. The membrane
stiffness matrix is of the form: [

K11 K12

K21 K22

]
assuming the displacement vector is of the form {u1,v1,u2,v2, ...}. The bending stiffness terms, based on
the shear deformation theory of plates, are based on the integrals in equation 4.226 in 106:

K11
i j =

∫
Ωe

(
D44

∂ψi

∂x
∂ψ j

∂x
+D55

∂ψi

∂y
∂ψ j

∂y

)
dxdy

K12
i j =

∫
Ωe

(
D44

∂ψi

∂x
ψ j

)
dxdy

K13
i j =

∫
Ωe

(
D55

∂ψi

∂y
ψ j

)
dxdy

K22
i j =

∫
Ωe

(
D11

∂ψi

∂x
∂ψ j

∂x
+D33

∂ψi

∂y
∂ψ j

∂y
+D44ψiψ j

)
dxdy

K23
i j =

∫
Ωe

(
D12

∂ψi

∂x
∂ψ j

∂y
+D33

∂ψi

∂y
∂ψ j

∂x

)
dxdy

K33
i j =

∫
Ωe

(
D33

∂ψi

∂x
∂ψ j

∂x
+D22

∂ψi

∂y
∂ψ j

∂y
+D55ψiψ j

)
dxdy

where the Di j are the elastic material constants defined (for the isotropic case) in equation 4.221 of 106:

D11 = D22 =
Eh3

12(1−ν2)

D12 = νD11

D33 =
Gh3

12
D44 = D55 = Ghk

where h is the thickness of the plate and k is the shear correction factor. The bending stiffness matrix is of
the form:  [K11] [K12] [K13]

[K22] [K23]
sym [K33]


assuming the displacement matrix is of the form {w1, θx1, θy1,w2, θx2, θy2, ...} To minimize the effect of
locking, reduced integration on the shear terms (i.e., those involving D44 and D55) is used.

The stabilization method from Belytschko107 is used for the Nquad element. Using single point integra-
tion K[1x1]

s for the shear stiffness matrix leads to hourglass modes for some problems. Using full integration
K[2x2]

s can cause shear locking in some problems. Belytschko recommends a shear stiffness matrix given as
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Ks = (1− ε)K[1x1]
s + εK[2x2]

s , a linear combination of the reduced integration and full integration shear stiff-
ness matrices. The fraction, ε = rt2/A is a function of thickness and area. Here r = 0.03, t is the element
thickness and A the area of the shell. This automatic selection of ε works well for very thin plates, but can
be a problem for thicker elements; clearly, ε should never exceed 1.

The layered shell formulation, also based on first-order shear deformation theory, draws heavily from
[108], particularly equations 3.4-5 and 3.4-6 found therein.

The stiffness matrices developed for the isotropic and laminate cases do not account for in-plane rota-
tional stiffness. A fictitious stiffness for the θz d.o.f. is provided by equation 12.3-4 in [5]. The resulting
element stiffness matrix is 24 x 24, accounting for 6 d.o.f at each of the four nodes.

A consistent mass matrix is formed based on equation 4.235 in 106:

Mi j =
∫

Ωe
ρhψiψ j dxdy

where ρ is the material density. The diagonal mass matrix is derived by row summation.

Element level strains are expressed by equation 4.147 in 106:

{ε}e = [B]e {∆}e

where the five terms in {ε}e are εx, εy, and τxy as well as the transverse shear strains γyz and γzx. The 5 x 24
matrix [B]e is formed by the element shape functions and their derivatives and the 24 x 1 vector {∆}e are the
nodal displacements. The membrane and bending strain-displacement relationships are found, respectively,
in equations 11.1-3 and 11.1-4 in [5]:

Membrane:
εx = u,x εy = v,y γxy = (u,y+v,x )

Bending:
εx =−zθy,x γxy =−z(θy,y +θx,x)
εy =−zθx,y γyz = w,y−θx

γzx = w,x−θy

Note that the bending equations are altered slightly from 11.1-4 in [5]. In that reference, a rotation about the
x-axis is expressed as θy and a rotation about the y-axis is θx x. These definitions have been reversed in the
above equations.

The user provides element properties in the Sierra/SD input deck. The required parameters are:

1. Element thickness.

2. Material ID, which contains the required material properties (E, ν, ρ).

3. For the layered shell case, each layer must have specified its own material ID (usually an orthotropic layer),
thickness and fiber orientation.

3.16 Truss

This is the definition for a Truss element based on pages 214-216 of Cook (ref 5).
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The truss uses linear shape functions. Unlike the truss elements used by Nastran, there is no torsional
stiffness. The truss is uniform in area, i.e. the area is not a function of position in the truss.

The following parameters are read from the exodus file.

1. The cross sub-sectional area of the truss (Attribute 1)

3.17 Springs

The Spring element is the simplest one dimensional element. It has no mass. Entries in the stiffness matrix
are added by hand. Note the following.

• The force generated in a Spring element should be collinear with the nodes. Typically spring elements
connect coincident nodes so that no torques are generated.

• Springs attach 3 degrees of freedom. In the event that some of the spring constants are zero, there
is no effective stiffness for that associated degree of freedom. However, the degree of freedom will
remain in the A-set matrices. This will be a problem if the other degrees of freedom are not attached
to other elements which provide stiffness entries connecting them to the remainder of the model. For
an understanding of the various solution spaces (such as the A-set), see section 5.1.

The data for spring elements is entered in the input file. Three values are given, Kx, Ky, and Kz. This
results in a 6x6 element stiffness matrix,

K′ =



Kx 0 0 −Kx 0 0
0 Ky 0 0 −Ky 0
0 0 Kz 0 0 −Kz

−Kx 0 0 Kx 0 0
0 −Ky 0 0 Ky 0
0 0 −Kz 0 0 Kz

 (3.105)

Notice that K′ is blocked. It could be written more simply,

K′ =
(

K′11 −K′11
−K′11 K′11

)

The rotation matrix for the two endpoints is block diagonal.18 As a result, the stiffness matrix in the
basic coordinate system can be written,

18 In other words, the displacements in a rotated frame are related to the unrotated frame by a transformation matrix of the form,[
u1
u2

]
= [T ]

[
ũ1
ũ2

]
where,

T =

[
R1 0
0 R2

]
Here, Ri is a 3x3 rotation matrix, and because the two nodes of the spring must rotate together, R1 = R2
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K =

(
K11 K12
K12 K11

)
where,

Ki j = RT K′i jR

and R is the 3x3 rotation matrix of subsection 3.25.

3.18 Superelements

A superelement refers to the reduced mass and stiffness matrices generated as part of a model reduction pro-
cess. See section 1.13 for details of the reduction. Typically with Sierra/SD, the reduction is accomplished
initially and written to a file, and the resulting superelement is later read from a file for subsequent analysis
as part of a full system (or residual structure).

Superelements may contain sensitivity matrices. A point estimate of the superelement mass or stiff-
ness matrix may be computed as a Taylor series expansion and used as part of a standard analysis. The
approximate reduced matrix is given by the expansion.

Kr(p)≈ Kr(po)+
dKr

d p
(p− po) (3.106)

where p is the sensitivity variable, po is the nominal value of that variable and Kr(p) represents the reduced
order matrix evaluated at an arbitrary point in parameter space.

3.19 Gap Elements

The Gap element is a nonlinear spring which has a stiffness matrix that is dependent on displacement. In
the element coordinate frame, the stiffness matrix has the same form as the matrix in equation 3.105 with
the following replacements.

Spring Gap
Open Closed

Kx KU KL
Ky KT ×KU/KL KT
Kz KT ×KU/KL KT

Note that typically KL� KU .

Also, like the spring, the two nodes of the gap element must rotate together and the matrix transforms
exactly as the matrix for a spring element.

3.20 Multi-Point Constraints, MPCs

A description of MPCs is contained in the users manual. This subsection discusses the coordinate system
dependencies.
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MPCs may be defined in any coordinate system. However, all nodes in the MPCs are defined in the same
system. This is done for convenience in parsing, and not for any fundamental reason. Consider a constraint
equation where each entry in the equation could be specified in a different coordinate system.

∑
i

Ciu
(ki)
i = 0

where Ci is a real coefficient, and u(ki)
i represents the displacement of degree of freedom i in degree of

coordinate system ki. We can transform to the basic coordinate system using u(ki)
i = ∑ j R(ki)

ji u(0)j , where R(ki)

is the rotation matrix for coordinate system ki. Then we may write,

∑
i, j

CiR
(ki)
ji u(0)j = 0

or,

∑
i

C(ki)
i u(0)i = 0

where C(ki)
i = ∑ j R(ki)

i j C j. Note however, that in this analysis, we have assumed that the dimension of C is 3.
Thus, rotation into the basic frame will likely increase the number of coefficients.

Sierra/SD is designed to support constraints through at least two methods. These include a constraint
transform method and Lagrange multipliers. Lagrange multiplier methods are used for all the parallel
solvers. The serial solver uses constraint transform methods.

3.20.1 Constraint Transforms

Constraints may be eliminated using the constraint transform method. This is described in detail in Cook,
chapter 9 (ref 5). In this method, the analysis set is partitioned into constrained degrees of freedom and
retained degrees of freedom. The constrained dofs are eliminated.

Unlike many Finite Element programs, Sierra/SD does not support user specification of constraint and
residual degrees of freedom. The partition of constrained and retained degrees of freedom is performed
simultaneously in the “Gauss()” routine. This routine performs full pivoting so the constrained degrees of
freedom are guaranteed to be independent. Redundant specification of constraint equations is handled by
elimination of the redundant equations and issue of a warning. User selection of constrained dofs in Nastran
has led to serious difficulty to ensure that the constrained dofs are independent and never specified more
than once.

For constraint elimination we have a constraint matrix C = [Cc, Cr] where Cc is a square, non-singular
matrix and Cr is the solution. We wish to solve for,

Crc =−[Cc]
−1Cr

This is equivalent to the Gauss-Jordan elimination problem for Kx = b if we let Cr = b, Cc = K and
x = −Crc. There is one additional wrinkle: we have mixed the rows of C so Cc is intermingled with Cr.
However, we only require that CC be non-singular. Therefore if we do a Gaussian elimination with full
pivoting we should simultaneously obtain an acceptable reordering of C, and obtain Crc.
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In practice, it is not even necessary that Cc be non-singular. It is not uncommon for two identical
constraints to be specified. The program issues a warning and continues.

Constraint transform methods do not currently support recovery of MPC forces.

The Gaussian elimination is presently being performed with a sparse package called ”SuperLU,” instead
of a dense Gaussian elimination, to speed up the time to create Crc. On some platforms, e.g., sgi and DEC,
the blas routine dmyblas2.c in the CBLAS directory of of the SuperLU directory (need superlu-underscore-
salinas.tar to create this) should be the one and only routine whose object file is placed into the SuperLU-
blas library (presently called libblas-underscore-super.a) to be linked in to create the Sierra/SD executable.
Failure to include this routine will cause failures of the type ”Illegal value in call to DSTRV” on the above
platforms, and including more than just dmyblas2.c can cause slow performance on many platforms as the
SuperLU-CBLAS could override the built-in blas routines. (The built-in routines are almost always faster.)

3.21 Rigid Elements

Sierra/SD supports standard pseudoelements for rigid bodies. These include,

• RRODs - a rigid truss like element, infinitely stiff in extension, but with no coupling to bending
degrees of freedom. There is exactly one constraint equation per element.

• RBARS - a rigid beam, with up to 6 constraint equations per element.

• RBE2 - a rigid solid. With up to 6(n−1) degrees of freedom deleted, where n is the number of nodes.

• RBE3 - an averaging type solid. This connects to many nodes, but removes up to 6 dofs on the slave
node.

All of the rigid elements are stored and applied internally as MPC equations. The RBE2 is a special case of
RBAR (actually just multiple instances). Note, that unlike MPC equations, these rigid elements do activate
(or touch) degrees of freedom. In general, an MPC equation will not activate a degree of freedom. In the
case of a rigid element however, it is necessary to activate the degrees of freedom before constraining them.
Otherwise the rigid elements do not act like real elements.

Rigid elements are input into Sierra/SD using exodus beam elements. A block entry is then provided in
the input file indicating what type of rigid element is required. There is no stiffness or mass matrix entry for
any type of rigid elements (only the MPC entries described above).

Considerations for Nastran users

These rigid elements are provided for similar capability with Nastran, however significant differences can
exist. There are a number of reasons for this. A primary issue is the differences in the solvers. Sierra/SD
solvers manage the separation of dependent and independent degrees of freedom, freeing the analyst from
having to manage this complexity. Specification of rigid elements in Nastran implies this relation. When
the elements are applied in the most common ways (such as an RBAR constraining all 6 dofs), little or no
differences are found between the two implementations. When only some of the dofs are constrained, and
certainly if Nastran’s autospc capability is invoked, larger differences may be found.
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3.21.1 RROD

An RROD is a pseudoelement which is infinitely stiff in the extension direction. The constraints for an
RROD may be conveniently stated that the dot product of the translation and the beam axial direction for a
RROD is zero. There is one constraint equation per RROD.

Consider the geometry of Figure 3.21.1. The equation of constraint for the RROD may be written as
follows.

lxdux + lyduy + lzduz = 0 (3.107)

A

B

~l′

~duA

~duB

~l

Figure 17. Rigid Element Geometry. The undeformed extent of the bar
may be expressed as~l, with components,

lx = xB− xA

ly = yB− yA

lz = zB− zA

After deformation, ~du = ~duB− ~duA, the modified extent is,~l′, with com-
ponents as below.

l′x = lx +dux

l′y = ly +duy

l′z = lz +duz.
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3.21.2 RBAR

An RBAR is a pseudoelement which is infinitely stiff in all the directions. The constraints for an RBAR
may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified mathematically by requiring that the
translation be the cross product of the rotation vector and the bar direction.

~T = ~R×~L

where ~T is the translation difference of the bar (defined as ~U2−~U1),

~R is the rotation vector, and

~L is the vector from the first grid to the second.

The three constraints in the cross product, together with the three constraints requiring identical rotations at
both ends of the bar form the six required constraint equations. Referring to Figure 3.21.1, the six constraint
equations may be written as follows.19

dux + lyRz− lzRy = 0 (3.108)

duy + lzRx− lxRz = 0 (3.109)

duz + lxRy− lyRx = 0 (3.110)

Rxa = Rxb (3.111)

Rya = Ryb (3.112)

Rza = Rzb (3.113)

Partial Constraints on Rbars

Nastran permits application of only some of the above constraints on an RBAR. For example, one can
apply only the first 3 constraints, and ignore the constraints on rotation alone. In addition, Nastran permits
control of which end of the bars is constrained, and can split dependent and independent degrees of freedom
between the nodes. However while Nastran permits less than 6 dependent dofs, there must always be exactly
6 independent dofs.

Sierra/SD uses two attributes in the exodus file to establish partial constraints on RBARs. An at-
tribute labeled “CID FLAG INDEP”is the constraint flag associated with the independent dofs. It should
always be “123456”, and it is always associated with the first node of the bar. The second attribute,
“CID FLAG DEPEND”, establishes the dependent degrees of freedom on the second node of the bar. This

19 For a zero length bar, the first three constraints are modified to become dux = duy = duz = 0.



154

attribute determines which of the equations above are applied. For example, if CID FLAG DEPEND = 123000
then only the first three constraint equations are applied.

With partial application of the constraint equations, the results can be confusing. If equations 3.111-
3.113 are not applied, then the rotation terms in 3.108 are appropriate only to the independent node. This is
not always what is anticipated by the analyst, and because there is no mechanism for allocating degrees of
freedom to arbitrary ends of the bar, it may differ from what is produced by Nastran.20

3.21.3 RBE3

The RBE3 element behavior is taken from Nastran’s element of the same name. Earlier implementations
of the RBE3 differed significantly from the MSC/Nastran implementations (see section 3.22). The revised
element should act like a Nastran RBE3 for most applications21. The element is used to apply distributed
forces to many nodes while not stiffening the structure as an RBE2 or RBAR does. The RBE3 uses the
concept of a slave node. The theory follows the MSC documentation included in section 3.22.

3.21.3.1 Characteristic Length. An element characteristic length is computed to allow scaling the equa-
tions. The distance between the reference point (subscript q) and a connected point (subscript i) is expressed
by the components

Li,x = xi− xq (3.114)

Li,y = yi− yq (3.115)

Li,z = zi− zq (3.116)

Li =
√

L2
i,x +L2

i,y +L2
i,z (3.117)

The characteristic length of the element is the average of these lengths,

Lc =
Nc

∑
i=1
|Li|/Nc, (3.118)

where Nc is the number of connected points. If Lc is computed as a binary zero it is changed to a value of
unity.

To ensure that the element is invariant to a change of scale, the weighting functions w1 through w6

20 Applying CID FLAG INDEP = CID FLAG DEPEND = 1 results in an RROD type constraint.
21The Sierra/SD element is not as flexible as the Nastran element in all respects. In particular, there is no flexibility to apply

node specific weighting. Weights may be applied by degree of freedom, but these weights are applied uniformly to all nodes in the
pseudo element.
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Figure 18. Equilibration of loads

q

i

Li,x

Li,y

A force of−ê1 at point i is equivalent to
a force of−ê1 and a moment of τz = Li,y

at point q.

provided by the user are modified to produce a connected grid point’s weighting matrix.

W =



w1
w2 0

w3
w4L2

c
0 w5L2

c
w6L2

c

 (3.119)

That is, the rotational DOF coefficients are scaled by the square of the characteristic length.

3.21.3.2 Equilibration. Conventional equilibration equations are applied. These equations relate a force
applied at the reference point to an equivalent force and moment applied at the slave node as illustrated in
Figure 18. The loads at the connection point, i, relate to the loads at the slave point.

Pq = S′iqPi (3.120)

Where,

Siq =



1 0 0 0 Li,z −Li,y

1 0 −Li,z 0 Lx

1 Li,y −Li,x 0
1 0 0

0 1 0
1

 (3.121)

3.21.3.3 Assembled Constraint. As shown in section 3.22 (equation 3.129), the loads on the set of all
connection nodes may be computed from the load on the slave node.

Pi = G′qiPq (3.122)
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Where,
Gqi = A−1S ′W (3.123)

here S is a concatenation of the individual Siq,

S =


S1,q
S2,q
...

SNc,q

 , (3.124)

Similarly,

W =


W1

W2
...

Wc

 (3.125)

and A is a 6 by 6 weightings matrix.
A = S ′WS (3.126)

We require that A be non-singular, which corresponds to a requirement that the RBE3 be non-mechanistic.
The constraint relation follows directly from Gqi, i.e. define the 6 by (6+6Nc) matrix,

C = [ −Iqq Gqi ] (3.127)

and apply the constraint,

C
[

uq

ui

]
= 0. (3.128)

Each row of C contains the constraint coefficients for one of the six possible constraints in the RBE3.

3.21.4 RBE3 – old version

The RBE3-old elements behavior is taken from Nastran’s element of the same name. Note however, that the
precise mathematical framework of the Nastran RBE3 element is not specified in the open literature. This
element should act like an RBE3 for most applications. The element is used to apply distributed forces to
many nodes while not stiffening the structure as an RBE2 or RBAR would. The RBE3-old uses the concept
of a slave node. Constraints are specified as follows.

1. The translation of the slave node is the sum of translations of all the other nodes in the element.

2. The rotation of the slave node is the weighted average of all the other nodes about it. This is deter-
mined by the nodal translations, not by their rotations.

While the first of these constraints is easy enough to apply using multi-point constraints, the second is a
little more difficult. We seek a least squares type solution.
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slave

X1

X2

X3

Let ~Di = ~Ui−~Uslave,

~Li = ~Xi−~Xslave

The L represent a vector from the “origin” to the point i, while the Di represent the differential displace-
ment of the same points. Note that the origin is at the location of the slave node, and will not in general be
at the centroid of the structure.

We will use least squares to compute the rotational vector of the slave node. This is equivalent to
computing a rotational inertial term and requiring a similar net rotation for the centroid.

The displacement at the centroid should be given by,

~Di = ~R×~Li

or, in the least squares sense we seek to minimize E.

E = ∑
i
(~Di−~R×~Li) · (~Di−~R×~Li)

Take the derivative of E with respect to a component of R, rk.

dE
drk

= 0 = 2∑
i
(êk×~Li) · (~R×~Li)−~Di · (êk×~Li)

Now, let R = ∑m rmêm. We substitute for R in the previous equation to obtain,

∑
m

∑
i

rm(êk×~Li) · (êm×~Li)−~Di · (êk×~Li) = 0

Now, if we write Li as a column vector then the expression (êk×~Li) · (êm×~Li) can be written as LT
i Li · I−

LiLT
i . If the sum on i is performed for the first term, we may write,

∑
m

rmAmk−∑
i

êk · (~Li×~Di) = 0

where

Amk =

(
n

∑
i
|Li|2

)
δmk−Lm

i Lk
i
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This provides three equations (one for each k) in the 3 unknowns, rm. Note that Lm
i represents the m compo-

nent (1-3) of the vector Li.

The solution is found by looping once through all i to fill in the A matrix, and simultaneously to fill out
the coefficients for the three equations involving Di. Once the loop has been completed, the coefficients of
R are known, and the three components of rm can be added for each of the three equations. Each equation
has 3 components of R, 2n components of Ui and 2 components of Uslave for a total of 2n+5 equations.
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3.22 MSC documentation of Nastran’s RBE3 element

The documentation of the modern RBE3 element is provided by MSC from their web page.109 It has been
reformatted for math type formatting in TEX.

Solution#: 4494 Last Modified Date: 06/01/00 09:06:19 AM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN (1002 or 1004)

Product Version: Product Feature:
Article Type: FAQ Publish: Y

The RBE3 element is a volume or surface spline element similar to the RSPLINE line spline element.
The purpose of this memorandum is to develop a method for computing the terms in the equations of
constraint generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 G1,1 G1,2
RBE3 15 5 123456 1.0 123 10 20

$ G1,3 G1,4 WT2 C2 . .
, 30 40

$ UM G1 C1 G2 C2 . . .
, UM 10 123 20 23 30 3

The grid points 10 through 40, entered in the Gi,j fields on the entry, are connected to a reference
grid point (number 5). The number of connected points, Nc, is unlimited. The physical principle used to
generate the constraint equation coefficients is that the motion of a body connected to the reference grid
point produces a weighted least-squares best fit to the actual motions at the other connected grid points.
The reference point is connected by 1 through 6 DOFs (REFC specification). The connected points are also
connected by 1 through 6 DOFs (Ci specification) with a weighting factor Wti. The UM data is optional,
and is explained below.

The reference is the original design document for this element. Over the years some changes have been
made in the interests of better theory and increased numerical robustness. Those changes are incorporated
in this document as though this were the original design document, to avoid the awkwardness of first ex-
plaining older behaviors and then the present behavior. The original equations of the reference are derived
with conventional variational principles applied to displacement variables. The derivation used here is based
on force variable principles. This has proven to be more intuitive and better understood by some engineers.
The results derived by the displacement method theory and force method theory are identical. The reference
is not available in machine-readable format. A fax copy may be requested from the MSC/NASTRAN De-
velopment Secretary, Jan.McLaughlin@MSCSOFTWARE.COM. It is primarily of historical interest now.

3.22.0.1 REFERENCE: Mathematical Specification for the RBE3 Element, MAG-4, 15 April 1975
(Also known as MAG-81).22

22 This TAN is known in MSC’ s internal filing system as MAG-102.
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3.22.1 Generation of unit weighting functions

The element is designed to allow use of any coordinate system at any connected grid point, the global
coordinate system in NASTRAN parlance. In the interests of clarity the equations are first developed for
a system where all variables are defined in one common coordinate system (the basic coordinate system),
then modified to allow global coordinates. An element characteristic length is computed to allow scaling
the equations. The distance between the reference point (subscript q) and a connected point (subscript i) is
expressed by the components

Li,x = xi− xq

Li,y = yi− yq

Li,z = zi− zq

Li =
√

L2
i,x +L2

i,y +L2
i,z

The characteristic length of the element is the average of these lengths, Lc = ∑
c
i=1 |Li|/c, where c is the

number of connected points. If Lc is computed as a binary zero it is changed to a value of unity.

The weighting functions w1 through w6 provided by the user are modified for reasons to be motivated
later to produce a connected grid point’s weighting matrix, a diagonal matrix shown here as a vector. Let
w̃i = wiL2

c . Then,
W = [w1 w2 w3 w̃4 w̃5 w̃6]

That is, the rotation DOF coefficients are scaled by the characteristic length squared, but not the transla-
tion DOF coefficients.

Conventional equilibrium equations are developed,

Siq =



1 0 0 0 z −y
1 0 −z 0 x

1 y −x 0
1 0 0

0 1 0
1



This matrix expresses the loads that must be applied to the reference point to react loads applied at a con-
nected point,

Pq = S′iqPi

The equilibrium matrix can also be used to generate a loading pattern on the connected points due to a load
on the reference point. Let Pqin be a set of arbitrary loads on the reference point. When this load is applied,
it is “beamed out” as loads on the connected points,
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Pi =


P1
P2
...
Pc

=


W1

W2
...

Wc




S1
S2
...
Sc

XPqin =WSiq

X is a 6 by 6 matrix to be determined. The criterion used in its determination is that the load distribution
mechanism should be in equilibrium. The equilibrium condition is that

Pqout =
[

S′1 S′2 ... S′c
]

Pi = S′iqPi

Then
Pqout = S′iqWSiqXPqin

If Pqout = Pqin, then
X = [S′iqWSiq]

−1 = A−1

and,
Pi =WSXPq = G′qiPq

Where for convenience we define,
G′qi =WSX (3.129)

3.22.1.1 Transformation. The direction cosine matrix Ti expresses the transformation between ui, the
values in basic coordinates, and ũi, the values in global coordinates:

ui = Tiũi

The transformed equilibrium equations and weighting matrices are

Siq =


T1S1
T2S2
...

TcSc


The transformed weighting matrix in global coordinates is

Wi = T ′i WiTi

The transformed A matrix is
Ai = S′iqWiSiq

A = ∑
i

Ai

It is shown in the reference that the introduction of global coordinates modifies Gqi as shown:

Gqi = TiA−1[Siq]Wi
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This implies the dual relationship between displacements

uq = Gqiui

Cast in the Nastran convention of constraint equations,

Rqi = [ −Iqq Gqi ]

and,

Rqi

[
uq

ui

]
= 0.

Rqi is the rows of the matrix of MPC coefficients for one RBE3 element.

3.22.2 Selection of dependent dofs (Optional)

The default selection for dependent DOFs (m-set) are the REFC DOFs listed for the REFGRID. There are
modeling applications where it is convenient to use these DOFs in a set exclusive from the dependent set,
such as the analysis set (a-set). The dependent DOFs may be moved to the connected DOFs with the optional
UM data. The number of DOFs must match the number of REFC DOFs, and the selected DOFs in the UM
data must have non-zero weighting functions. If the subset of Rgi associated with these DOFs is named
Rmm, the Rqi matrix is pre-multiplied by the inverse of this quantity,

Rqi = R−1
mmRqi = [−Imm|R−1

mmRmn]

The user is required to select a UM set that produces an Rmm matrix that is stable for inversion. There are
TANs that describe techniques for selection of a good set of UM variables. The uncoupling of the dependent
equations allows some of them to be discarded, as described in the next section.

Equation selection. The total Rqi is generated above. It has 6 rows. Six or less rows are transmitted to the
system constraint matrix Rmg, depending on the REFC data. This data consists of a packed integer with up to
6 numbers in the range of 1 to 6, and describes which rows are to be passed to Rmg. The remaining rows are
discarded.

3.22.3 Features for dimension independence

A good finite element should produce the same results regardless of the units of measure used in the model.
That is, the same structure modeled in millimeters, centimeters, or inches should provide identical results.
The RBE3 gains this valuable characteristic by scaling the rotation weights with an element characteristic
length,Lc, as described above. The effect of this scaling is demonstrated here by an example. In the inter-
ests of simplicity all geometry is in the basic coordinate system and the only non-zero offsets are in the z
direction. The T matrix is then an identity matrix, and need not be listed in these equations. Consider the
problem, defined by the Siq matrix above and Wi matrices below, where
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x = xi− xq = 0,

y = yi− yq = 0,

z = zi− zq >< 0

The user inputs up to six weighting factors w1 through w6. The weighting factors for rotation are multiplied
by Lcsq = Lc2, the square of the characteristic lengths of the element. These modified terms are underlined
in the matrix below, for example, w̃4 = L2

cw4. The modified weighting factor matrix is then

W =



w1
w2

w3
w4L2

c
w5L2

c
w6L2

c


The contribution for grid point i to the equilibrium matrix A is

A = S′WS =



w1 0 0 0 w1z 0
w2 0 −w2z 0 0

w3 0 0 0
L2

cw4 + z2w2 0 0
Sym L2

cw5 + z2w1 0
L2

cw6


The diagonal terms for rotation (for example A55) have the form L2

cwi + z2w j, where wi is the rotational
weighting term, and w j the translation term active in rotation weighting because of offsets. The motivation
for modifying the rotation term can be seen in this addition of effects. Both L2

c and z2 are in the same units
of measure. When a model is changed from centimeters to millimeters, for example, the ratio of rotation
effects to offset effects is unchanged. This modification of the rotation term allows the solution in the area
of the RBE3 element to be the same for all units of measure. As z and Lc are related by a common factor
the ratio of moment terms coming in directly from applied moments (L2

cw5) stays in constant ratio to the
moment terms from offsets (z2w1) regardless of whether lengths are measured in centimeters, millimeters,
or inches. This modification of the moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counter-intuitive behavior of the RBE3
element, the difference between the user-supplied weighting functions and the actual values used in the
corresponding coefficients of the constraint matrix. Let us simplify the expression of A above by setting
zi = 0.0. A becomes a diagonal matrix, which when inverted and multiplied by W to form G, becomes an
identity matrix. That is, the weighting factors, whatever they are, are scaled to provide equilibrium. There
may be little correlation between the values in the weighting matrix and the values in the coefficients of the
constraint matrix. The requirements for equilibrium may change these values radically. Similarly, it shows
that the significance of the weighting factors is mainly in their ratio to one another. If all are multiplied by
10, for example, the inversion of the A matrix, used to impose equilibrium, removes this factor of 10 so that
the coefficients of the constraint matrix are unchanged.
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Stability issues. The solution requires the inverse of A. It may be ill-conditioned for linear equation solution.
It is first equilibrated to make the inversion more stable. Let Ad be the diagonal terms of A. It is pre- and
post-multiplied by the inverse of Ad ,

A = A−1
d AA−1

d

This makes all of the diagonal terms of A unity. Any term multiplied by A is first multiplied by Ad .
A matrix decomposition subroutine is used that provides an inverse conditioning number. As this number
approaches zero the solution becomes more ill-conditioned. A belt-and-suspenders check that is less math-
ematical and more engineering-oriented is made by also computing the largest term in [A−1A− I], which
should be a computational zero, and outputting this value when it passed a certain threshold. If the element
is determined to be pathologically ill-conditioned it causes a user fatal error exit.

3.22.4 Upward compatibility

The RBE3 element prior to V70.7 had a more primitive theory that does not provide dimension indepen-
dence. Its theory is identical to that above if a value of 1.0 is substituted for the characteristic length Lc. A
system cell is provided to obtain this theory in V70.7. Its use allows computation of the same answers that
were provided in earlier systems.

System Cell 310 Value Action
0 (default) Use new theory.
1 Use old theory.

The name of this system cell is OLDRBE3. For example, either entry below will cause the old theory to be
used:

NASTRAN OLDRBE3=1 $ or
NASTRAN SYSTEM(310)=1 $

Changes to the RBE3 element for V70.7 are summarized in TAN 4155.

3.22.5 Topics for future work

The present order of operations requires that at first six equations be generated that allow meeting equi-
librium conditions, then some equations (rows of Rqi) may be discarded, at the user’s option. This makes
modeling of planar elements, for example, awkward. There are now enough numerical tools such as Singu-
lar Value Decomposition (SVD) that would allow a different order of operations where only the equations
required would be generated. There would then be no requirement to make the element stable for 6 DOFs,
then, only for the number of equations actually used.

At present all dependent DOFs must either be totally on the reference grid point(default action), or on
the connected grid points (UM data). There have been some unsolvable modeling problems due to singular
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Rmg matrices uncovered by clients having to do with interconnected RBE3 elements in a field of very regular
geometry. If the geometry is perturbed slightly the equations are solvable, a disquieting feature when small
changes in the model move it from a stable to an unstable state. It was shown in breadboard work that the
problem is solvable if some of the reference point DOFs and some of the connected DOFs can both be in
the Um data. The present rule that dependent DOFs must all be on the reference point or all on connected
DOFs was done merely for programming convenience. The rule could readily be changed to allow mixed
sets of dependent freedoms.

There are now enough mathematical tools to allow the dependent set for all MPC equations to be picked
automatically, without the requirement for user input. There have been some unsuccessful attempts to do so
in the past, but the lessons learned there, and the new mathematical tools available today, (particularly the
SVD) offer promise for successful research in this area.

3.22.6 RBE3 element changes in Version 70.7

Solution#: 4155 Last Modified Date: 04/17/00 02:50:26 PM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN Basic (1003)

Product Version: 70.7 Product Feature: ELEM
Article Type: FAQ Publish: Y

3.22.6.1 1. The theory used for the RBE3 element has been modified so that the element is now inde-
pendent of the units of measure. For example, a structure modeled in centimeters will now provide the same
results when modeled in millimeters. This was not true for certain cases in systems prior to Version 70.7. A
system cell provides the capability available prior to Version 70.7.

Ref. Tan 3280 for Version 70.6

3.22.6.2 2. THEORY The modeler inputs a reference grid point, its connectivity, a weighting factor for
other connected grid points, their connectivity, and the connected grid point ids. An RBE3 element used for
testing this new capability of the form

$ EID [blank] REFGRID REFC WT C G1 G2
RBE3, 123, , 4 123456 1.0 123456 1 2
$ G3
, 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFs to the 1, 2, and 3 grid points, for
all of their DOFs, with a uniform weighting factor for all. The element divides forces applied to point 4 to
the other grid points in a manner that is influenced by their geometry and weighting factors, in a manner that
maintains equilibrium. Define a line from the reference point to a connected point as an arm of the element.
In the revised theory, a characteristic length, Lc of the element is calculated from the average length of
its arms. The square of this length is used to modify the weighting of the connected rotation DOFs. The
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theory for the element is rather involved. The derivation is given in TAN 4494. Some of the results of that
derivation are used here. The constraint equation terms applied to a connected point ui and the reference
point uq are

uq = Gqiui

The constraint matrix itself has the following components:

Gqi = TiA−1SiqWi

Ti is a rotation matrix that is an identity matrix when GIDi and GIDq are in parallel coordinate systems.
It will be dropped from this discussion. Siq is the traditional matrix for transmitting rigid body motion
between point “i” and point “q”. It has unit terms on the diagonal, and offset lengths on coupling terms
between translation and rotation in the upper triangle. Wi is the user-supplied weighting functions, and A
a matrix used to force the element to meet equilibrium requirements. All MSC/NASTRAN constraint-type
(R-) elements must meet an equilibrium condition, to avoid any possibility of internal constraints in the
element. It is instructive once in one’s lifetime, if tedious, to work out a simple example by hand, for a
simple geometry. We will instead just look at typical terms, to avoid some of the tedium.

The A matrix is generated by finding the resultants of loads applied at the connected points, measured at
the reference point. The 5,5 term for a single connected point is shown in the referenced TAN to be

A55 = w5 + z2
i w2.

When A is inverted, this term operates on the corresponding Siqwi term

Giq55 = w5/(w5 + z2
i w1)

If zi is zero, the effects of this normalization is to ”wash out” the w5 weighting term, so that the coefficient
is 1.0. If zi is not zero, the ratio of translation load effects z2

i w1 to rotation loads effects w5 is

Ratio = w5/(z2
i w1)

This leads to a dimensional dependence, in that the ratio changes when the model is converted from mil-
limeters to centimeters, for example. This undesirable behavior is eliminated by multiplying the rotation
weighting factors by the square of the characteristic length, Lc,

Ratio = L2
c ∗w5/(z2

i w1)

If zi (and Lc) have their units of measure changed, the ratio stays constant. If this modified weighting
constant is used on the 5,5 term

Giq55 = L2
cw5/(L2

cw5 + z2
i w1)

If zi = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantity is constant with
changes in units of measure.

Note that answers will change only when rotations are given connectivity for the connected DOFs, and
then only when the rotations at the connected DOFs are part of a redundant load path. This is because
the element is required to meet equilibrium conditions to avoid internal constraints, that is, single point
constraints that do not appear in the SPCFORCE output. If the load path is statically determinate the
equations used to impose equilibrium will adjust the values of internal loads in the element as needed to meet
equilibrium, regardless of the value of the weighting functions. Always meeting equilibrium requirements
ensures that there will be no internal SPC forces in the element.
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3.23 Shell Offset

Consider a shell offset, with an offset vector, ~v. Notice that ~v could be defined at each nodal location in
what follows, but for this development, we assume a single offset ~v which applies to all nodes. Define a
coordinate system at the node, with variables u. On the offset beam the coordinate system is ũ.

Now, u is related simply to ũ. The constraint of a constant offset may be stated that the displacement
difference of the two systems must be orthogonal to ~v, i.e. (u− ũ) =~v×~κ, where ~κ is the rotation at the
nodes. Notice that the rotation is the same at both nodes.

Thus we can write, (
ũ
κ

)
= [L]

(
u
κ

)
(3.130)

where L is a constant matrix which depends only on the geometry. We can use this transformation matrix to
eliminate the degrees of freedom associated with ũ. The energy of the shell can be written,

Estrain = 0.5
{

ũ
κ

}T [
K̃
]{ ũ

κ

}
(3.131)

But with this substitution,

Estrain = 0.5
{

u
κ

}T [
LT K̃L

]{ u
κ

}
(3.132)

If we let K = LT K̃L, then,

Estrain = 0.5
{

u
κ

}T

[K]

{
u
κ

}
(3.133)

Thus, ũ has been eliminated, and the equations may be rather simply put in terms of the output variables.

3.24 Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element Analysis by Cook et al.[5],

{re}=
∫

Ve

[B]T [E]{ε0}dV −
∫

Ve

[B]T{σ0}dV +
∫

Ve

[N]T{F}dV +
∫

Se

[N]T{Φ}dS (3.134)

where each of these terms are defined in Subsection 4.1 of the above mentioned reference. The load vec-
tor, {re}, is composed of four parts in equation 3.134. In this document, only the last part, which is the
contribution of the surface tractions to the load vector, will be considered. Rewriting,

{re}=
∫

Se

[N]T{Φ}dS (3.135)
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Here, the integral is calculated over the surface of the element on which the surface traction, {Φ}, is applied.
Therefore,

{Φ}= [Φx Φy Φz]
T (3.136)

and [N] is the shape function matrix of the element on which the surface tractions, {Φ}, are applied. To
generate a model for application inn Sierra/SD, {Φ} can be generated within PATRAN or other preproces-
sors by applying a spatial field to a specified side set. In Sierra/SD however, these spatial field values are
available only on the surface nodes of the element. Using the nodal values of this surface traction, the value
at any surface location must be determined using an interpolation function over the surface or side of the
element. Since only one value per node may be specified on the side set in Sierra/SD, a surface traction may
be applied only in one direction at a time. Therefore, {Φ} will be defined as,

{Φ}=


nx

ny

nz

Φ(x,y,z) (3.137)

3.24.1 Sierra/SD Element Types

The following 3-D and 2-D elements have consistent loads implemented:

• Hex8

• Hex20

• Wedge6

• Tet4

• Tet10

• Tria3

• TriaShell

• Tria6 (four Tria3s)

• QuadT (two Tria3s)

• Quad8T (1 QuadT and 4 Tria3s)

3.24.2 Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ}=


nx

ny

nz

Φ(x,y,z) (3.138)
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where [nx,ny,nz]
T is the normal to the element face. Hence, the consistent loads can be calculated as,

{re}=
∫

Se

[N]T{Φ}dS =
∫

Se

[N]T Φ(x,y,z)(~a×~b)dSe (3.139)

Here,

~a = [
∂x
∂r

,
∂y
∂r

,
∂z
∂r

]T (3.140)

~b = [
∂x
∂s

,
∂y
∂s

,
∂z
∂s
]T (3.141)

where Φ is the pressure load, and (x,y,z) are the physical coordinate directions, and (r,s) are the local
element directions for the face of the element. The normal may be obtained by taking the cross-product of
~a and~b.

3.24.3 Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence, shape functions for quads
and triangles could be used to evaluate the consistent loads. However, application of the shape functions
for the 3-D elements, reduces code and “fits” better into the current finite element class structure. This is
what is currently implemented. This requires a “mapping” of the 3-D elements’ faces to a 2-D plane. The
additional overhead for using the 3-D elements is that each face of the element must have this “mapping”
which states how the elements’ 3-D shape functions map to a 2-D element. For example, for a Hex20,
the element coordinates (η1,η2,η3) are defined in a particular way. For each face of the Hex20, defined
by a side id, the face has a local coordinate system (r,s). The “mapping” defines how (r,s) are related to
(η1,η2,η3). This also helps define how 2-D Gauss points are mapped to the 3-D face. These mappings are
available for all the linear and quadratic 3-D elements.

3.24.4 Shell Elements - consistent loads

All the 2-D elements (shell elements) compute loads based on the Tria3 shape functions. The consistent
loads calculations for the Tria3 can be “copied” to the TriaShell. This way all the shell elements use the
same consistent loads implementation. Since Carlos Felippa designed the Tria3, his consistent loads imple-
mentation is used. The portion for linearly varying pressure loads is shown here. If the loads are aligned
along an edge, {q}, they need to be decomposed into (qs,qn,qt). Where (s,n, t) are coordinate directions
along the element edge. Coordinate s varies along the element edge tangentially, n is normal to the element
edge, and t is tangent to the element edge in the transverse direction, i.e., in the direction of the thickness.
Once, the edge load is decomposed, the equations for consistent loads are,
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f 1
s =

1
20

(7qs1 +3qs2)L21 f 2
s =

1
20

(3qs1 +7qs2)L21 (3.142)

f 1
n =

1
20

(7qn1 +3qn2)L21 f 2
n =

1
20

(3qn1 +7qn2)L21 (3.143)

f 1
t =

1
20

(7qt1 +3qt2)L21 f 2
t =

1
20

(3qt1 +7qt2)L21 (3.144)

m1
s = m2

s = 0 (3.145)

m1
n =−

1
60

(3qt1 +2qt2)L2
21 m2

n =
1

60
(2qt1 +3qt2)L2

21 (3.146)

m1
t =−

1
40

(3qn1 +2qn2)L2
21 m2

t =
1
40

(2qn1 +3qn2)L2
21 (3.147)

where qs1 is the value of q in the s direction at node 1 of the edge, L12 is the length of the edge. The
superscripts 1,2 are the node numbers of the edge. Note, it is assumed here that the load q is per unit length,
but this is not assumed when creating the sideset in PATRAN for example. Therefore, this distributed load
is multiplied, in Sierra/SD, by the thickness of the triangle.

Now if the pressure load is on the face of the Tria3, the equations become,

f 1
x = f 1

y = m1
z = f 2

x = f 2
y = m2

z = f 3
x = f 3

y = m3
z = 0 (3.148)

f 1
z =

(
8
45

p1 +
7
90

p2 +
7
90

p3

)
A (3.149)

f 2
z =

(
7
90

p1 +
8
45

p2 +
7
90

p3

)
A (3.150)

f 3
z =

(
7
90

p1 +
7
90

p2 +
8
45

p3

)
A (3.151)

m1
x =

A
360

[7(y31 + y21)p1 +(3y31 +5y21)p2 +(5y31 +3y21)p3] (3.152)

m1
y =

A
360

[7(x13 + x12)p1 +(3x13 +5x12)p2 +(5x13 +3x12)p3] (3.153)

m2
x =

A
360

[(5y12 +3y32)p1 +7(y12 + y32)p2 +(3y12 +5y32)p3] (3.154)

m2
y =

A
360

[(5x21 +3x23)p1 +7(x21 + x23)p2 +(3x21 +5x23)p3] (3.155)

m3
x =

A
360

[(3y23 +5y13)p1 +(5y23 +3y13)p2 +7(y23 + y13)p3] (3.156)

m3
x =

A
360

[(3x32 +5x31)p1 +(5x32 +3x31)p2 +7(x32 + x31)p3] (3.157)

where yi j = yi− y j and xi j = xi− x j, A is the area of the triangle, pi is the value of the pressure load at node
i, and (xi,yi) are coordinates of the triangle in 2-D space.
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Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using triangles require a little extra
overhead. For example, the Quad8T is composed of 1 QuadT and 4 Tria3s. However, since it is defined as
a Quad8T, it has distribution factors at its 8 nodes, and these distribution factors have to be mapped to the 1
QuadT and the 4 Tria3s. The number of distribution factors is 3 however, if the load is applied to its edge.
Therefore, this extra coding can be seen in the ElemLoad method of the shells’ classes.

3.25 Coordinate Systems

Coordinate systems are provided for a number of applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 3.17).

5. specification of output coordinate systems (in history files only).

There are some applications for coordinate systems which we do NOT intend to support. These include,

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In the case of
non-cartesian systems, the XZ plane is used for defining the origin of the θ direction only.

Each coordinate system carries with it a rotation matrix. It is important to clarify the meaning of that
matrix. Specifically,

X ′ = RX

Where X ′ is the new system of coordinates, R is the rotation matrix and X is the basic coordinate system.
For cartesian systems, the rotation matrix is static. Curvilinear systems will require computation of a new
rotation matrix at each location in space.

The usual identity on rotation matrices applies, namely:

X = RT X ′ (3.158)

and
RT R = RRT = I

As an example, consider a cartesian system as shown in Figure 19.

The new system (marked by primes) is rotated θ from the old system with the new X ′ axis in the first
quadrant of the old system. The rotation matrix is,

R =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1
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Figure 19. Original, and rotated coordinate frames

3.26 Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here describe the transforma-
tion equations and implications for general constraints in any coordinate system. The implications of this
use in Sierra/SD are also outlined.

Consider a constraint equation,
C′u′ = Q (3.159)

where the primes indicate a generalized coordinate frame. The frame may be transformed to the basic
coordinate system using equation 3.158, and

u′ = Ru (3.160)

We can now rewrite equation 3.159,
C′Ru = Q

Cu = Q
(3.161)

where C =C′R.

Thus a general system of constraint equations may be easily transformed to the basic system. Further,
the rotational matrix is a 3x3 matrix which may be applied to each node’s degrees of freedom separately.

3.26.1 Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained and retained degrees of
freedom, and describe the constrained dofs in terms of its Schur complement.

u =

[
ur

uc

]
(3.162)

The whole constraint equation may be similarly partitioned.

[
Cr Cc

][ ur

uc

]
= [Q] (3.163)
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Note that Cr is an cxr matrix, Cc is cxc, and Q is a vector of length c. Under most conditions Q is null.

This may be solved for uc,
uc =C−1

c Q−C−1
c Crur (3.164)

We must be concerned with cases where Cc may be either singular or over constrained. The former case
occurs if we try to eliminate c equations, but the rank of C is less than c. This could occur if the equations
are redundant. We can over constrain the system only if Q is nonzero. Both these situations need attention,
but both can be dealt with.

We may also write the solution using a transformation matrix, T .

[
ur

uc

]
= [T ] [ur]+ Q̃ (3.165)

where

T =

[
1

Crc

]
(3.166)

Crc =−C−1
c Cr (3.167)

and

Q̃ =

[
0

C−1
c Q

]
=

[
0
Q̆

]
(3.168)

3.26.2 Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics are then,[
Krr Krc

Kcr Kcc

][
ur

uc

]
=

[
Rr

Rc

]
(3.169)

or,
[K] [T ]ur +[K]

[
Q̃
]
= R (3.170)

and
T T KTur = T T {R−KQ̃

}
= R̃ (3.171)

We can define the reduced equations,

K̃ = T T KT = Krr +KrcCrc +CT
rcKcr +CT

rcKccCrc (3.172)

and,

R̃ = T T R−T T
[

KrcQ̆
KccQ̆

]
= Rr +CT

rcRc−KrcQ̆−CT
rcKccQ̆

(3.173)
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The solution in the retained system is
K̃ur = R̃ (3.174)

The system may now be solved using the reduced equations, and the constrained degrees of freedom
may be solved using equation 3.164. Much of this is detailed in Cook, but without the constrained right
hand side.

For eigen analysis the mass matrix may be transformed exactly as the stiffness matrix in equation 3.172.
There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The force vector and force
vector corrections may be time dependent. There is currently no structure to store these time dependent
terms in Sierra/SD.

3.26.3 Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the basic coordinate system.
In that system the equations decouple, Cc is unity and Crc is zero. Then equations 3.172 and 3.173 reduce to
elimination of rows and columns.

To properly account for the coupling that occurs when the constraints are not applied in the basic coor-
dinate system, we must generate all the constraint equation on the node. This may be up to a 6x6 system. I
believe that there is no real conflict in first applying constraints in the basic system, then adding additional
constraints in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equation 3.159).

2. Transform the constraint equation to the basic coordinate system (equation 3.160).

3. Determine the constraint degrees of freedom. It may need to be done in concert with the next step to
keep from degrading the matrix condition.

4. Compute the two transformation matrices C−1
c and Crc from equations 3.163 and 3.167.

5. Compute the corrections to the force vector from equation 3.173. We currently do not have a structure
to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 3.172.

7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.

In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of freedom (equation
3.164).

A few words about post processing could also prove useful. In the first implementation of Sierra/SD,
constraints were applied only in the basic coordinate system. The degree of freedom to eliminate was
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obvious from the exodus file, and it’s value was a constant (usually zero). In this later version, a more
general approach must be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is done by setting the
G-set vector to zero before merging in the A-set results. There is no storage cost for this.

2. Other degrees of freedom are managed using an spc info object. An array of these objects will be
stored globally. Each object contains the degree of freedom to fill, an integer indicating the number
of other terms, a list of dofs/coefficients, and a constant. This facilitates solutions of the form,

uspc = constant+
retained dofs

∑
i

uiCi (3.175)

3.26.4 Multi Point Constraints

The application to multi-point constraints is very straight forward. The only difference is that the whole
system of equations must be considered together. This changes the linear algebra significantly because
the matrices must now be stored in sparse format. However, the steps that are applicable for single point
constraints apply here as well. Subsection 3.20 deals more explicitly with MPCs.

3.26.5 Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [110]. We identify how to transform output
PDS.

Let H( f ) denote a frequency response function vector for a given input (in the global system) expressed
as,

H( f ) = H1( f )e1 +H2( f )e2 +H3( f )e3

where ei represents the unit vectors of this space. Note that H( f ) is an output vector at a single location in
the model. H( f ) can also be expressed using an alternate set of unit vectors, ẽi.

H( f ) = H̃1( f )ẽ1 + H̃2( f )ẽ2 + H̃3( f )ẽ3

Taking the dot product of these two equations and equating the results, we have,

H̃1( f ) =
3

∑
k=1

ckiHk( f ) (3.176)

where
cki = ek · ẽi

The spectral density function Gi j( f ) (for a given input and at a single output location) can be expressed as,

Gi j( f ) = αH∗i ( f )H j( f ) (3.177)
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where α is a constant and superscript * denotes complex conjugate. Similarly for the alternative coordinate
frame,

G̃i j( f ) = αH̃∗i ( f )H̃ j( f )

We may use equation 3.176 to express G̃ in terms of the Hi. We may then use the spectral definition in
equation 3.177 to provide the transformation of spectral densities.

G̃i j( f ) = α

(
3

∑
k=1

ckiH∗k ( f )

)(
3

∑
m=1

cm jHm( f )

)

=
3

∑
k=1

3

∑
m=1

ckicm jGkm (3.178)

This can be expressed in matrix notation as G̃ =CT GC.

3.27 Hexshells

Hexshells are provided to give the analyst an element with performance similar to a standard shell, but with
the mesh topography of a brick. Thus, thin regions of the model can be meshed with hexshells, without
concern for the bad aspect ratio of the elements, and with topography consistent with a solid mesh.

The element is documented extensively in the description by Carlos Felippa (see reference 111). The
paragraphs in this document summarize the limitations of the shells and the possible usage.

Because hexshells have an inherent thickness direction, it is important to be able to identify that direc-
tion. There are (at least) four methods to accomplish this.

natural The natural ordering of the nodes in the element can determine the thickness direction. This is the
method used by Carlos in developing the element. I believe that the connectivity for the element will
indeed have to be modified to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements uniquely identifies the
thickness direction.

topology Usually the topology can be used to identify the thickness direction. The hexshell should be used
in a sheet. If the hexshells are considered alone, only the free surfaces of the sheet are candidates for
the thickness direction. Further, once the thickness direction is established for one element, it must
propagate to the neighbors. (Note that this implies that we can’t have a self intersecting sheet).

projection The thickness direction could be determined by the closest projection to a coordinate direction.

We will try to support all of the above methods. The topology method puts the least burden on the analyst.
It is the least explicit however, and the most work to implement (especially in parallel). The next simplest
(for the analyst) is the projection method. Sideset methods are burdensome for both the analyst and the code
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development team. The natural method is the easiest to implement, but can be next to impossible for the
analyst to use.

Input will be structured as follows. Keywords are associated with each method. Only one of the four
keywords above can be entered. If no keyword is entered, then topology is assumed.

Block 9
HexShell
orientation sideset=’1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end

The mass properties of a layered HexShell are computed approximately as follows.

1. The volume fraction, fi, and density, ρi, of each layer is determined.

2. The contribution of the mass of the element is added to the nodes as if an element of density ρ̄=∑i ρi fi

filled the entire element.

The net affect of this is that the mass is computed as if an average density were applied. This could introduce
minor errors if the element is thick and is much denser on one side than another.

Materials for all HexShell specifications can be defined as a function of temperature, with the tempera-
tures defined through the exodus file as element variables.

3.28 Membrane

In this section we provide the theory behind the tangent stiffness matrix for the quad membrane element in
Sierra/SD. This element has stiffness in the in-plane directions, but has no stiffness out-of-plane. Also, it
has no rotational degrees of freedom. We note that the formulation given here is identical to the membrane
used in Abaqus.112

To begin, we define two orthogonal surface directions in the plane of the membrane l and m, and a
normal vector n. Given these unit vectors, a local coordinate system (l,m,n) is implied. Then, we consider
the weak formulation of the internal force term for the membrane in the deformed configuration1

δWint =
∫

Ω

δDDD : σσσdΩ (3.179)
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where Wint is the virtual work, Ω is the domain of the membrane, σσσ is the stress tensor, and LLL = ∂uuu
∂xxx = DDD+WWW

is the deformation gradient. The rate-of-deformation DDD and spin tensors WWW are defined as

DDD =
1
2

[(
∂uuu
∂xxx

)
+

(
∂uuu
∂xxx

)T
]

(3.180)

WWW =
1
2

[(
∂uuu
∂xxx

)
−
(

∂uuu
∂xxx

)T
]

(3.181)

Note that we are using an updated Lagrangian formulation here, and thus the integral in equation 3.179 is
over the current (deformed) configuration of the membrane.

We note that we can also write equation 3.179 as

δWint =
∫

Ω

δLLL : σσσdΩ (3.182)

since W is a skew-symmetric tensor, and the tensor product of a skew-symmetric tensor with a symmetric
tensor (i.e. σσσ) is zero.

Equation 3.182 is written in terms of the global coordinate system. In the formation of the tangent
stiffness matrix, we wish to use the fact that all stress components normal to the plane of the membrane are
zero. Hence, when considering equation 3.179 in terms of the (l,m,n) coordinate system of the membrane,
we can eliminate the out-of-plane terms and write as

δWint =
∫

Ω

δLlm : σlmdΩ (3.183)

where l,m = 1,2 are the indices for the in-plane coordinate system of the membrane, Llm = ∂ul
∂xm

, and σlm is
the 2x2, in-plane stress tensor.

Next, we need to relate the derivatives in the plane of the element to those in the global coordinate
system. This is because the numerical integration of the tangent stiffness matrix takes place in the plane of
the element (and hence involves derivatives with respect to in-plane coordinates), whereas the derivatives in
equation 3.183 are in terms of global coordinates. We can express the in-plane displacement in terms of the
out-of-plane displacement as

ul = uuu · lll (3.184)

um = uuu ·mmm (3.185)

un = uuu ·nnn (3.186)

Then, the relationship between the derivatives can be computed

∂uuu
∂xl

=
∂uuu
∂xxx

∂xxx
∂xl

=
∂uuu
∂xxx

eeel (3.187)

where eeel is the unit vector in the l direction. Similar expressions hold for the other components. Taking the
dot product of both sides of the previous equation with the unit vector in the m direction, eeem, we arrive at

∂um

∂xl
= eeem

∂uuu
∂xxx

eeel (3.188)
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Next, we consider the expression given for the tangent operator in112

∫
Ω

δDDD : CCC : dDDD+σσσ :
(
δLLLT ·dLLL−2δDDD ·dDDD

)
dΩ (3.189)

Since there is no stress in the out-of-plane direction, and nothing varies through the thickness, the thickness
can be pulled out, and this can be written simply as an area integral

t
∫

A
δDDD : CCC : dDDD+σσσ :

(
δLLLT ·dLLL−2δDDD ·dDDD

)
dA (3.190)

The first term is recognized as the material stiffness, and the second is the geometric stiffness term. In
particular, the material stiffness term is precisely the same as the standard form of the material stiffness in
three dimensions, expect that now it is restricted to two dimensions. The geometric stiffness term is more
involved, and so we elaborate some more on that.

First, we consider the deformation gradient in the plane of the element

Llm = eeel
∂uuu
∂xm

(3.191)

Then, we have

δLlm = eeel
∂δuuu
∂xm

(3.192)

δLT
lm =

(
∂δuuu
∂xm

)T

eeeT
l (3.193)

We also note that

LLLT LLL =

(
∂uuu
∂xm

)T

eeeT
l eeem

∂uuu
∂xl

=

(
∂uuu
∂xm

)T
∂uuu
∂xl

(3.194)

since eeeT
l eeem = δlm.

The rate of deformation DDD is simply the symmetric part of LLL. Thus, we can write

Dlm =
1
2

(
eeel

∂uuu
∂xm

+ eeem
∂uuu
∂xl

)
(3.195)

With these relations, we can expand the expression for the geometric stiffness, as

t
∫

A
σlm

[(
∂δuuu
∂xm

)T
∂uuu
∂xl
− 1

2

2

∑
γ=1

(
eeeγ

∂δuuu
∂xl

+ eeel
∂uuu
∂xγ

)(
eeeγ

∂δuuu
∂xm

+ eeem
∂uuu
∂xγ

)]
dA (3.196)

The material stiffness term can be integrated with a selective deviatoric approach, in much the same was
as for a volumetric element. First, we note that after finite element discretization, the material stiffness term
in equation 3.190 can be written as

Kmat =
∫

V
BTCBdV (3.197)

where K is the stiffness matrix, V is the volume of the element, B is the two-dimensional strain-displacement
matrix
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We define the mean quadrature counterpart to B,

B̃ =
∫

V
BdV (3.198)

We note that both B and B̃ can be decomposed into their volumetric and deviatoric components, i.e.

B̃ = B̃V + B̃D (3.199)

B = BV +BD

With these decompositions, we define

B̂ = B̃V + B̃D + sd(BD− B̃D) (3.200)

where sd is a parameter between 0 and 1. When sd = 0, the element corresponds to a mean quadrature
element. When sd = 1, the element corresponds to mean quadrature on the volumetric part, but with full
integration on the deviatoric component.

With this new definition of B̂, we can define the stiffness matrix for this element as

K =
∫

V
B̂TCB̂dV (3.201)

This is the approach taken for integrating the material stiffness term in equation 3.190

3.29 Corrections to Element Matrices

Several elements generate element matrices that may need corrections. For example, the stiffness matrix
generated from Craig-Bampton reductions may not be positive definite, and may not have the proper null
space. Infinite acoustic elements have a similar problem with the mass matrix. These errors are typically
small, but may lead to unstable systems. Correcting the errors is an important step.

The errors are removed using an eigen decomposition. We compute the eigenvalues and eigen vectors
of the element matrix of concern.

(A−λI)φ = 0

where A is the matrix of concern, λ are the eigenvalues and φ are the eigenvectors. Computation of the eigen
problem on a small element matrix is not expensive. We normalize the eigenvectors such that φT φ = I. It
follows that φT = φ−1. We then correct the element matrix by computing,

Ã jk = A jk−
λi<0

∑
i

φi jλiφik (3.202)

The element matrix Ã then replaces matrix A in subsequent calculations. The correction of the null space
vectors (as well as the element matrix) is optionally performed for Craig-Bampton models. See Figure 6.
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3.30 Mass Lumping

Typically Sierra/SD uses consistent mass for the calculation of the system response. Lumped mass is used
for applicaiton of gravity loads and is an option for eigen analysis and dynamics. There are several means of
generating a lumped mass matrix outlined in the literature. While none of these methods are truly optimal,
summing mass across rows is a well established method. This method works quite well for most volumetric
elements.

Shells, beams and some mass elements may have both translational and rotational degrees of freedom. It
makes no sense to sum these contributions – units don’t even match. Sierra/SD uses a row sum to determine
translational mass contributions, but restricts the sum to translational dofs. Thus, for a 2 node beam with 6
dofs per node, only columns 1:3 and 7:9 are included in the sum for rows 1:3. Rotational lumping is even
more problematic. We use the same row sum method for rotational inertias, though there is no theory to
support this. For example, row 4 of these matrices includes contributions from columns 4:6 and 10:12.

4 Loads and Materials

4.1 Matrices from Applied Forces

In addition to the standard mass and stiffness matrices that arise in linear structural dynamics, force-based
matrices are also common. The most common include follower stiffness matrices from applied pressures,
and Coriolis/centrifugal matrices in rotating structures. These notes describe the design of the interface for
these additional matrices. We will focus on the following three terms

1. Follower stiffness matrix from applied pressure. This is a nonsymmetric term, but is symmetrized,
and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, and becomes part of the stiffness
matrix.

3. Coriolis matrix in rotating structures. This is a skew-symmetric term that becomes part of the damping
matrix.

4.2 Analysis of Rotating Structures

The finite element analysis of rotating structures has been studied by many authors. There are two different
approaches to this problem, with each approach being limited to certain applications. In the first approach,
a rotating coordinate system is constructed that rotates with the structure.112, 113, 114, 115 Then, deformations
about that rotating coordinate system are sought. In the second approach, an Eulerian (ALE) formulation
is used, in which the structure rotates through an Eulerian mesh, and then Lagrangian deformations are
considered about the Eulerian configuration.116, 117 The Lagrangian approach is not appropriate for problems
when contact surfaces are present, since the boundary conditions in the contact patch would change with
time. On the other hand, the Eulerian approach is applicable to problems with contact, but requires the
structure to have a radial symmetry.
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In these notes, we derive the finite element formulation corresponding to three-dimensional finite ele-
ments for the Lagrangian approach. The Eulerian derivation can be found in.116

We begin by considering the homogeneous equations of motion of a solid body in three dimensions (see
Figure 20).
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Figure 20. A schematic of a structure that is undergoing rotations
about the three global coordinate axis.

ρr̈−∇ ·σ = 0 (4.1)

where r̈ is the particle acceleration, ρ is the material density, and σ is the stress tensor. We consider here both
the case of homogeneous (no forcing), as well as the case where the body forces from rotation enter into the
right hand side. This equation holds relative to a fixed, inertial reference frame. The term inertial reference
frame is typically used to describe a reference frame that is not accelerating. Thus, we assume that the
coordinate system is rotating, but not undergoing a translational acceleration. It could have a translational
velocity. We use a dot notation (i.e. Newton’s notation) to denote the time derivative of a function.

We now consider a reference frame that has the same origin as the inertial one described above, but
is rotating at some angular velocity Ω = (Ω1,Ω2,Ω3). We wish to formulate the problem in a relative
Lagrangian framework, in which the displacement, velocity, and acceleration are all written as relative
quantities, i.e. relative to the rotating coordinate system. Once the equations are written in terms of these
relative quantities, we will be able to consider the small deformation problem about this rotating state.

The position vector r of a point on the structure can be written in terms of either the stationary co-
ordinate system or the rotating (relative) coordinate system. Given these position vectors, the velocity and
acceleration expressions can be developed. Standard textbooks on rigid body dynamics118 give the following
expressions for the velocity ṙ and acceleration r̈ in terms of the relative velocity u̇rel and relative acceleration
ürel

ṙ = u̇rel +Ω× r (4.2)

and
r̈ = ürel +2Ω× u̇rel + Ω̇× r+Ω× (Ω× r) (4.3)

where r = x+ urel and x are the coordinates of the point in the rotating coordinate systems, and urel is the
displacement of the point relative to the rotating coordinate system.
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We can now rewrite the first term in equation 4.1 as

ρr̈ = ρ
[
ürel +2Ω× u̇rel + Ω̇× r+Ω× (Ω× r)

]
(4.4)

Having the equations of motion in the rotating coordinate system, we now proceed to construct the weak
formulation. This can be done by multiplying equation 4.1 by a test function v, substituting equation 4.4,
and integrating by parts

ρ

[∫
V

ürel · vdV +2
∫

V
(Ω× u̇rel) · vdV +

∫
V
(Ω̇× r) · vdV

+
∫

V
(Ω× (Ω× r)) · vdV

]
+

∫
V

σ : ∇vdV −
∫

S
σnvdS = 0

(4.5)

We note that since r = x+ u, the term involving x will simply become part of the load vector. Also, we
will subsequently drop the rel subscripts from the above equation, since all quantities are now in the relative
(rotating) coordinate system. Thus, the weak formulation becomes

ρ

[∫
V

ü · vdV +2
∫

V
(Ω× u̇) · vdV +

∫
V
(Ω̇×u) · vdV

+
∫

V
(Ω× (Ω×u)) · vdV

]
+

∫
V

σ : ∇vdV =

+
∫

S
σnvdS−ρ

∫
V
(Ω̇× x) · vdV −ρ

∫
V
(Ω× (Ω× x)) · vdV

(4.6)

For simplicity in the subsequent derivations we will drop the flux load term on the right hand side of 4.6.
Thus, we have

ρ

[∫
V

ü · vdV +2
∫

V
(Ω× u̇) · vdV +

∫
V
(Ω̇×u) · vdV

+
∫

V
(Ω× (Ω×u)) · vdV

]
+

∫
V

σ : ∇vdV =

−ρ

∫
V
(Ω̇× x) · vdV −ρ

∫
V
(Ω× (Ω× x)) · vdV

(4.7)

The first and last terms in the left hand side of the above equations correspond to the mass and stiffness
matrices, respectively. The second term is the skew-symmetric Coriolis term, the third term is the Euler
force term, and the fourth term is the symmetric centrifugal term. We note that the stiffness term includes
both the initial (material) stiffness associated with the material properties, as well as the geometric stiffness
associated with the stresses. This stress state comes from the solution of the steady-state spinning problem,
which will be described shortly.

It is easy to show that the centrifugal term is symmetric, whereas the Coriolis term is skew-symmetric.
For the centrifugal term, we note the following identity for the triple cross product

a× (b× c) = b(a · c)− c(a ·b) (4.8)

Using this for examining the centrifugal term, we have

ρ

∫
V
(Ω× (Ω×u)) · vdV = ρ

∫
V
(Ω · v)(Ω ·u)− (u · v)(Ω ·Ω)dV (4.9)
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By switching u and v in the above expression, the same result is obtained, since the dot product is commu-
tative. Thus, this term is symmetric.

For the Coriolis term, we use the following identities

a · (b× c) = b · (c×a) (4.10)

and
a×b =−b×a (4.11)

Using these two identities, we have

2ρ

∫
V
(Ω× u̇) · vdV = 2ρ

∫
V

v · (Ω× u̇)dV = 2ρ

∫
V

Ω · (u̇× v)dV

=−2ρ

∫
V

Ω · (v× u̇)dV =−2ρ

∫
V
(Ω× v) · u̇dV

(4.12)

A similar argument can be made to show that the Euler force term is skew-symmetric.

4.2.0.1 Stiffness Adjustments. We can now construct the finite element discretization of this equation
by adopting the usual expansions, u = Niui, u̇ = Niu̇i, and ü = Niüi. We will generate the forms of the
matrices corresponding to the interactions a single node (node i) with another single node (node j). Both of
these nodes are within the same element. These will be 3×3 matrices, which then can be projected into the
element matrices. First, we note the form of the expansion for displacement

u = Niui (4.13)

We also use the isoparametric approach and approximate the position vector as

x = Nixi (4.14)

where x = (x1,x2,x3) is the position vector of a point in the rotating coordinate system. Since the displace-
ment is a vector of dimension 3, each shape function can be represented as a dimension-3 vector of the form

Ni = (φi,0,0) (4.15)

where φi is the ith shape function. Although we write the shape function in the first entry of the 3-vector Ni,
it is actually placed in the k entry, where k = mod(i,3).

4.2.0.2 Coriolis Submatrix. With this notation, the 3× 3 Coriolis submatrix corresponding to the in-
teraction between shape functions i and j can be evaluated by setting u = Ni, and v = N j. Then, the
(i, j)submatrix is given by

2ρ

∫
V
(Ω×Ni) ·N jdV (4.16)

We also define the Coriolis rotation matrix as

=

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 (4.17)
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and the Euler force matrix as simply the time derivative of the Coriolis matrix

˙ =

 0 −Ω̇3 Ω̇2
Ω̇3 0 −Ω̇1
−Ω̇2 Ω̇1 0

 (4.18)

Finally, for a given finite element we define the matrix Λ to be the square matrix of dimension the number
of degrees of freedom for the element, where each 3×3 diagonal block of Λ simply contains a copy of Ω.
That is,

=


0 ... 0

0 ... 0
... ... ... ...
0 ... 0

 (4.19)

After doing some simplifications, we find that the element level Coriolis matrix is given by,

2ρ

∫
V
(Ω×Ni) ·N jdV = 2M (4.20)

where we have the on the right hand side, the product of the 3×3 matrices, and M and . M is simply the
diagonal matrix

M =

 ρ
∫

V φiφ jdV 0 0
0 ρ

∫
V φiφ jdV 0

0 0 ρ
∫

V φiφ jdV

 (4.21)

As observed earlier, because of the skew-symmetry of the matrix , the Coriolis matrix is skew-symmetric.

Now that we have the 3×3 interaction matrix for nodes i and j, and using the matrix Λ we can project
the result from equation 4.20 into the full element matrix

Kg = 2M (4.22)

where Kg is the Coriolis (gyroscopic) matrix, M is the mass matrix of the element.

4.2.0.3 Centrifugal Stiffness Contribution. Next, we derive the form of the 3× 3 submatrix corre-
sponding to the centrifugal term. Again, setting u = Ni and v = N j, we have the 3×3 matrix

ρ

∫
V
(Ω× (Ω×Ni)) ·N jdV = M (4.23)

As with the Coriolis term, we can project this into the full element mass matrix as

Kc = M (4.24)

Given the finite element discretizations just defined, we can construct the matrix equations correspond-
ing to equation 4.7 as

Mü+Gu̇+[Km +Kg +Ke +Kc]u = Fc +Fe (4.25)

where M and Km are the standard mass and stiffness matrices, Kg is the geometric stiffness matrix(to be
defined below),

G = ρ

∫
Ve

(Ω×Ni) ·N jdVe = M (4.26)
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is the Coriolis (or gyroscopic) matrix (given here over a single element volume Ve)

Ke,i j = ρ

∫
Ve

(Ω̇×Ni) ·N jdVe = M˙ (4.27)

is the Euler force matrix,
Kc,i j = ρ

∫
Ve

(Ω× (Ω×Ni)) ·N jdVe = M (4.28)

is the centrifugal matrix,

Fc, j =−ρ

∫
Ve

(Ω× (Ω× x)) ·N jdVe =−M x (4.29)

is the centrifugal force term, and

Fe, j =−ρ

∫
Ve

(Ω̇× x)) ·N jdVe =−M˙x (4.30)

is the force term corresponding to the Euler force matrix, where x is the position vector in the rotating
coordinate system of the nodes on the element.

We note that the solution of equation 4.25 must proceed in two steps. First, a static problem must be
solved to determine the stress field, which in turn can be used to determine the geometric stiffness matrix
Kg. Once Kg is known, equation 4.25 can be solved by standard methods.

4.2.1 Static Analysis

In the case of a statics, problem, we have ü = u̇ = 0, and equation 4.25 reduces to

[Km +Ke +Kc]u = Fc +Fe (4.31)

this equation can be solved for u, which then provides the stresses to allow for the computation of Kg.

4.2.2 Modal Analysis

In either the Lagrangian or Eulerian cases the formulation leads to a gyroscopic eigenvalue problem, which
can then be solved using a quadratic eigenvalue solver.

Setting the force terms to zero, and assuming a solution of the form u = eλt , equation 4.25 reduces to[
λ

2M+λG+(Km +Kg +Ke +Kc)
]

u = 0 (4.32)

Again, we mention that Kg must be determined by the solution of equation 4.31 before equation 4.32 can be
solved.

4.2.3 Transient Analysis

We note that equation 4.25 can be solved with a direct time stepping algorithm to compute the transient
response of the structure to some loading type. In that case the solution that is obtained is the time history
of the displacement u of the structure relative to the rotating coordinate system.
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4.3 Alternative Derivation Based on Lagrange’s Equations

Here we consider an element e with both translational and rotational degrees of freedom (dofs). It is assumed
that rows 1-6 of the element mass matrix Me correspond to the translational and rotational dofs of the first
node of the element. Similarly, rows 7-12 of Me are for the second node, and so forth. In these notes the
subscript e is used for element and not for Euler.

The velocity of node i of e in an inertial frame can be expressed as

vvvi = u̇uui +ωωω× (xxxi +uuui), (4.33)

where u̇uui is the velocity of node i in the rotating frame, ωωω is the angular velocity vector of the rotating frame,
xxxi is a position vector from the axis of rotation to node i, and uuui is the displacement vector of node i in the
rotating frame. Notice that the time derivative of xxxi in the rotating frame is zero. It follows from (4.33) that

vi = u̇i +Aui +bi, (4.34)

where vi, u̇i, and ui are 6x1 vectors of dofs for node i associated with vvvi, u̇uui, and uuui, respectively. Further,

A =



0 −Ω3 Ω2 0 0 0
Ω3 0 −Ω1 0 0 0
−Ω2 Ω1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , bi =



Ω2xi3−Ω3xi2
Ω3xi1−Ω1xi3
Ω1xi2−Ω2xi1

Ω1
Ω2
Ω3

 , (4.35)

where xxxi = (xi1,xi2,xi3) and ωωω = (Ω1,Ω2,Ω3). Let ne denote the number of nodes for element e. Defining

ve =


v1
v2
...

vne

 , u̇e =


u̇1
u̇2
...

u̇ne

 , ue =


u1
u2
...

une

 , be =


b1
b2
...

bne

 (4.36)

and Ae = diag(A,A, . . . ,A) we find
ve = u̇e +Aeue +be. (4.37)

Okay, all the hard work is done now. The kinetic energy of element e is given by

Te = vT
e Meve/2

= (u̇e +Aeue +be)
T Me(u̇e +Aeue +be). (4.38)

With Lagrange’s equations in mind, we find

d
dt

(
∂Te

∂u̇e

)
= Me(üe + Ȧeue +Aeu̇e + ḃe), (4.39)

∂Te

∂ue
= AT

e Me(u̇e +Aeue +be), (4.40)

where Ȧe and ḃe are obtained by replacing Ω1,Ω2,Ω3 in the previous expressions for Ae and be by Ω̇1,Ω̇2,Ω̇3.
We then obtain

d
dt

(
∂Te

∂u̇e

)
− ∂Te

∂ue
= Meüe +(MeAe−AT

e Me)u̇e +(MeȦe−AT
e MeAe)ue

+Meḃe−AT
e Mebe.

(4.41)
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The first matrix Me on the right hand side of (4.41) is the standard mass matrix, while (MeAe−AT
e Me) is the

skew symmetric Coriolis matrix. Similarly −AT
e MeAe is the symmetric centrifugal softening matrix, while

MeȦe is the contribution to the stiffness matrix from a non-constant angular velocity. The internal (strain)
energy of element e can be expressed as

Ue = uT
e (K

stand
e +Kgeom

e )ue/2, (4.42)

where Kstand
e and Kgeom

e are the standard and the geometric stiffness matrices for element e. If we ignore any
external or damping forces, the equations of motion for element e obtained from Lagrange’s equations are
given by

d
dt

(
∂Te

∂u̇e

)
− ∂Te

∂ue
+

∂Ue

∂ue
= 0 (4.43)

It then follows that the contribution of element e to the equations of motion are obtained from Lagrange’s
equations and given by

Meüe +(MeAe−AT
e Me)u̇e +(Kstand

e +Kgeom
e +MeȦe−AT

e MeAe)ue =

AT
e Mebe−Meḃe.

(4.44)

In summary,

1. We have expressions for all the various matrices and forcing terms originating from rotating coordinate
system effects. Notice in the derivation that they all originated from a single scalar, the kinetic energy
of element e.

2. Just like expected, we can avoid calculating additional integrals simply by using element mass matri-
ces.

3. There can be forcing terms for rotational dofs since the rows of ḃe associated with them are not
necessarily zero for a non-constant angular velocity.

4. For rotational dofs, there are no centrifugal loads for a constant angular velocity since the final three
rows and columns of A vanish (see AT

e Mebe term in (4.44)).

4.4 Random Pressure Loading

Input for random loads can be complicated. The most general type of input is the correlation matrix, which
is the inverse Fourier transform of the spectral density matrix,23 Si j(ω).

c(~x1,~x2, t1− t2) = E[P(~x1, t1)P(~x2, t2)] (4.45)

where E[] is the expected value of the pressure at two locations on the surface at respective times.

This could be defined as a user defined function. In the most general case, that is the best means of
a definition. However, defining that function is a real chore, and in many cases, the function can be more
easily defined.

23 In the frequency domain we have the autospectral density matrix, and cross spectral density matrices which together form the
spectral density matrix. It typically has units of (PSI)2/Hz.
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4.4.1 Specialization for Hypersonic Vehicles

A number of simplifications can reduce the complexity of the correlation matrix. In the following para-
graphs, we examine each of these, and arrive at a simplified parametric input for the correlation matrix.

Ergodic or Stationary Systems

Many variables change significantly during hypersonic flight. For example, the velocity of the body and the
density of the air may depend on the portion of the trajectory. However, within limited time bounds of the
trajectory, the system may be considered stationary. We represent this by writing the pressure as a product
of a deterministic function and a stationary function of time and space.

P(~x, t) = σ(~x, t)Q(~x, t) (4.46)

where, σ is a slowly varying, deterministic function, and Q contains all the random processes.

More precisely, the pressure field applied to the hypersonic body is not stationary due to, among many
things, the deceleration of the vehicle and the increase in dynamic pressure with time. However, we assume
here that this non-stationary behavior can be modeled simply by P = σQ, where Q is stationary and ergodic,
and σ is a scaling or modulation function of time and space. This class of non-stationary model is called a
modulated stationary process. Because Q is stationary, E[Q(x1, t1)Q(x2, t2)] can be written as a function of
t2−t1, call it τ(t2−t1). However, P is not stationary because E[P(x1, t1)P(x2, t2)] =σ(x1, t1)σ(x2, t2)τ(t2−t1)
cannot be written as a function only of (t2− t1); t1 and t2 appear in the σ terms.

This can simplify computation of the correlations of the pressure.

c(~x1,~x2, t1, t2) = E[P(~x1, t1)P(~x2, t2)] (4.47)

= σ(~x1, t1)σ(~x2, t2)E[Q(~x1, t1)Q(~x2, t2)] (4.48)

Separation of spatial and temporal components

We may often separate the temporal and spatial components of the correlation function.

E[Q(~x1, t1)Q(~x2, t2)] = π(~x1,~x2)τ(t1, t2) (4.49)

Where π(~x1,~x2) contains the spatial component of correlation, and τ(t1, t2) contains the temporal correlation.

Simplified Spatial Correlation

There is little data and few mathematical models of the spatial correlation of pressure on a body during
hypersonic flight. A report by Corcos119 is most commonly used. It describes the correlation variation as
products of decaying exponentials. There is some evidence that the variables may be “self similar”, at least
in the flow direction, so the decay constants are scalable with the frequency and velocity. The self-similar
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properties are less well established in the transverse directions.120 The spatial component of correlation may
be written as,

π(~x1,~x2) = exp(−αz∆z)exp(−βt∆y) (4.50)

In this expression, the spatial correlation terms depend on the separation in the stream (or flow) direction,
∆z, and on the transverse separation, ∆y.

Simplified Temporal Correlations

Aerodynamic models that predict the pressure power spectral density (PSD) on the surface of a hypersonic
body are still under development. Many of these models predict a PSD that is only a weak function of the
axial location. Thus, the PSD at the back of the body is a scaled version of those at the front. Further, with
high velocities, the PSD is very flat within the band of interest. Thus, the PSD may be represented as a
product of a deterministic function of z and a single PSD. The correlations reflect this same product, and the
deterministic function σ() can be employed to carry this scaling. If the PSD is flat over the bandwidth, the
temporal correlation may be further simplified. We may then write,

τ(t1, t2) =
sin(ωc(t1− t2))

ωc(t1− t2)
(4.51)

where we use the fact that the Fourier transform of a constant frequency response with cutoff frequency ωc

is a sin(x)/x.24

Temporal Interpolation and Filtering

As noted above, we have an assumption that there is a cutoff frequency. Anything above that frequency is
out of band of the analysis, and can (should) be filtered. Equivalently, time steps less than T = π/ωc should
also be filtered. One way to approach this is to sample at an interval T , and interpolate using a sin(x)/x
type filter as described below. Note that in addition to the benefit of filtering, sampling at an interval, T , can
reduce the amount of memory used to store the temporal correlation.

Let [−ν∗,ν∗], 0 < ν∗ < ωc, be the frequency band of a deterministic function, x(t), −∞ < t < ∞. Then,

x(t) = lim
n→∞

n

∑
k=−n

x(kT )αk(t,T ) (4.52)

where

αk(t,T ) =
sin[π(t/T − k)]

π(t/T − k)
(4.53)

=
sin[ π

T (t− kT )]
π

T (t− kT )
(4.54)

“It is sufficient to know the values x(kT ), with k = ...,-2, -1, 0, 1, 2, ... to reconstruct the entire signal x(t),
−∞ < t < ∞.”

24While a flat response results in a sin(x)/x, which is the default, many PSD responses are not flat, so a user defined temporal
function may be required.
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Note:

αk = 1 if
t
T

= k (4.55)

αk = 0 if
t
T

any other integer (4.56)

|αk| decreases to zero as
∣∣∣ t
T
− k
∣∣∣ increases. (4.57)

Advancing the Coarse Temporal Solution

The strategy described involves computation of the solution on a coarse temporal grid, with interpolation to
a fine time step as described above. The process for advancing the coarse time solution is described here.

The initial coarse solution, Y (x,T ), is given by the solution to the Cholesky factor of the correlation
matrix.

Y = chol(c̃)W (4.58)

where

c̃ is the d(2n+1) x d(2n+1) correlation matrix

W is a vector of zero mean, unit variance random variables,
and

Y is the properly correlated solution vector at the 2n + 1
coarse time values, 0, T , 2T , ..., (2n+1)T and the d sample
locations.

4.4.1.1 Temporal Advancement As described in texts on stochastic calculus (see 121 for example), we
can compute the response of a Gaussian random vector when a portion of the vector is known. Consider a
random vector Y , which is partitioned into a known part, Y (1), and a portion to be determined, Y (2). We may
write, (see equation 2.109 of [121]),

ξ = (Y (2)|Y (1) = z) (4.59)

˜ N(µ̂, ĉ) (4.60)

where,

µ̂ = µ(2)+ c(2,1)[c(1,1)]−1(z−µ(1)) (4.61)

ĉ = c(2,2)− c(2,1)[c(1,1)]−1c(1,2) (4.62)

and µ(i) is the mean on each portion of the solution.

In words, we can express the normal distribution of the unknown vector as a random distribution with mean µ̂
and variance given by the covariance matrix ĉ. The covariance does not depend on the previous samples but
only on the partition of the original covariance matrix. The mean depends weakly on the previous sample,
z.

The matrix c is partitioned as follows.
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c(1,1) is just c̃, the original correlation matrix. It is a square matrix of dimension d(2n+1).

c(2,2) is the d xd correlation matrix associated with zero time lag.

c(2,1) is an additional set of d rows of the correlation matrix associated with the time lag (2n+2)T .

c =


C(0) C(T ) C(2T ) ... | C((2n+2)T )
C(T ) C(0) C(T ) ... | C((2n+1)T )
... ... ... ... | ...

C((2n+2)T ) C((2n+1)T ) C(2nT ) ... | C(0)


and C(T ) is the d x d correlation matrix evaluated on the d spatial points at time lag T .

4.4.1.2 Procedure The solution is advanced as follows.

1. We augment the system to have d(2n+2) equations. Thus c(1,1) is the d(2n+1) covariance previously
calculated.

2. We use b = chol(c(1,1)) to compute the desired mean of the new distribution. Specifically,

µ̂ = µ(2)+ c(2,1)(btb)−1(z−µ(1)) (4.63)

= c(2,1)(btb)−1z (4.64)

= gz (4.65)

where we have used the fact that both µ(1) and µ(2) are zero. We store the rectangular matrix g =
c(2,1)(btb)−1. We no longer need the original covariance matrix c̃, nor it’s factor, b.

3. We reuse g to compute the revised correlation matrix.

ĉ = c(2,2)− c(2,1)[c(1,1)]−1c(1,2) (4.66)

= C(0)−gc(1,2) (4.67)

where C(0) is the d x d correlation matrix for a time lag of zero. The matrix ĉ is d xd as well.

4. We perform a Cholesky factor on ĉ. This is the second such factor, and it is performed on a smaller
space. It need be performed only on the first advancement as ĉ is a constant.

b̂ = chol(ĉ) (4.68)

5. Compute the new distribution.

ξ = Ñ(µ̂, ĉ) (4.69)

= µ̂+ chol(ĉ)w (4.70)

= µ̂+ b̂w (4.71)

where w is a zero mean, unit normal Gaussian basis.

6. Move solution vector solution, Y , up by one, and insert ξ in the new locations.
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4.5 Removing Net Torques from Applied Loads

4.5.1 Introduction

For structures without any connections to ground, there are six rigid body modes. Three modes correspond
to rigid body translations, while the remaining three are for rigid body rotation about the center of mass of
the structure. If the applied loads have a net torque about the center of mass, then we should expect the
structure to eventually begin tumbling as time progresses. If the net torque vanishes, then Salinas should
perform well (in small strain settings) since rotational deformations should remain small. This expectation
holds even in the presence of large displacements caused by loads with significant translational rigid body
components.

The purpose of these notes is to describe options for removing net torques from applied loads in order to
avoid tumbling in Salinas during transient analyses. One option assumes that the center of mass is known,
while the second makes use of the mass matrix for the system finite element model. We note that net
translational loads are not removed using either of these options. Only the mass matrix option is used in
Sierra/SD.

4.5.2 Use of Mass Matrix

Let M and K denote the mass and stiffness matrices for the structure. Further, let Φtran and Φrot contain
the translational and rotational rigid body modes. Both Φtran and Φrot have 3 columns, and for floating
structures KΦtran = KΦrot = 0. We will assume the mass matrix M is symmetric and positive definite, while
the stiffness matrix is assumed to be symmetric and have 6 rigid body modes as stated. Further, we assume
for the damping matrix C that CΦrbm = 0 and ΦT

rbmC = 0, where Φrbm =
[

Φtran Φrot
]
. If rigid body

motion of the structure does not cause any damping forces, then this assumption holds. One instance where
this assumption on C does not hold is for models with mass proportional damping.

Consider a node i of the model that has both translational and rotational degrees of freedom. The rows
of Φrbm associated with this node are given by

Φ
i
rbm =



1 0 0 0 ri3 −ri2
0 1 0 −ri3 0 ri1
0 0 1 ri2 −ri1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (4.72)

where rrri = ri1eee1 + ri2eee2 + ri3eee3 is the position vector of node i in the global coordinate system. Note here
that the origin for rrri is the origin of the global coordinate system and does not necessarily coincide with the
center of mass of the system.

Salinas mass orthonormalizes the rigid body modes. Namely,

Φ
T
rbmMΦrbm = I, (4.73)

where I is the identity matrix (notice this equation also implies ΦT
rotMΦrot = I). Moreover, the columns of

Φrbm are orthonormalized from the leftmost column to the right so that the rigid body translational modes
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remain in the first three columns of Φrbm. Henceforth, Φrot will refer to the mass-orthonormalized rigid
body mode matrix for rotations.

The standard equations of motion can be expressed as

Mü+Cu̇+Ku = f , (4.74)

where u and f are the displacement and applied force vectors. Next, consider the approximation u = Φrbmq,
where q is a 6x1 vector. Substituting u = Φrbmq into (4.74) and premultiplying by ΦT

rbm, it follows from
(4.73) and the assumptions KΦrbm = 0 and CΦrbm = 0 that

q̈ = Φ
T
rbm f , (4.75)

or, equivalently,

q̈tran = Φ
T
tran f , (4.76)

q̈rot = Φ
T
rot f . (4.77)

Notice from (4.77) that there will be rigid body rotational accelerations if ΦT
rot f 6= 0. We will now consider

a modified force vector of the form
f̃ = f −MΦrots, (4.78)

where s is a 3x1 vector to be determined from the condition

Φ
T
rot f̃ = 0. (4.79)

Substitution of (4.78) into (4.79) and use of ΦT
rotMΦrot = I then gives us

s = Φ
T
rot f , (4.80)

and (4.78) then reads
f̃ = f −MΦrot(Φ

T
rot f ). (4.81)

Examination of Flexible Modes

By premultiplying (4.81) by ΦT
rot and using ΦT

rotMΦrot = I once again, one can confirm that ΦT
rot f̃ = 0 as

required to avoid rigid body rotational accelerations.

Let Φ f lex denote the mode shape matrix for the undamped flexible modes. The mode shape matrix for
all the modes can be written as Φ =

[
Φtran Φrot Φ f lex

]
. Notice since both ΦT MΦ and ΦT KΦ are

diagonal, it follows that ΦT
f lexMΦrot = 0.

The generalized force associated with the flexible modes is given by

f f lex = Φ
T
f lex f . (4.82)

Since ΦT
f lexMΦrot = 0, we then find

f̃ f lex = Φ
T
f lex f −Φ

T
f lexMΦrot(Φ

T
rot f )

= f f lex. (4.83)

Thus, the generalized force vector f̃ f lex for the modified force vector is identical to the original one f f lex.
This implies that the adjustments made to the original force vector do not modify the flexible response. This
is a nice feature.
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Parallelization Issues

When the model is decomposed by element25 the mass matrix provides requisite information about dupli-
cation of nodal quantities on the boundaries. Thus, nodal quantities (which are replicated on subdomains
which share a boundary) are only counted once in a dot product. However, for statics, there is no mass
matrix, and the identity is substituted for the mass matrix. While the system matrix is the identity, the ap-
propriate submatrix of the identity on each subdomain is not a subdomain identity matrix. Rather, it is a
diagonal matrix with entries,

Ĩsub
j j = 1/cardinalitynode j

This definition of the subdomain identity submatrix, Isub permits multiplication without duplication of values
on the subdomain boundary. This submatrix must be used for orthogonalization and for the force correction
(equation 4.81).

Filter of Output Displacements

The mass matrix also provides stabilization of the solution matrix. For statics solutions on floating structures,
the solution matrix is just the stiffness matrix, which is singular. Additional tools are in place to help the
linear solver with this challenge. In particular, GDSW (see e.g.8) may solve such systems provided that the
dimension of the null space is provided. However, small nonequilibrated forces or round off in the solver
can still result in solution vectors in the range of the null space. For statics, these displacement vectors are
also filtered to eliminate the rigid body component. The filtering uses equation 4.81, with the identity matrix
replacing the mass matrix.

4.6 Anisotropic Materials

Here we discuss how anisotropic elasticity is implemented in Sierra/SD.26 The approach is reasonably stan-
dard, but a documentation here is necessary to specify which of the many conventions of material parameter
numbering is used in Sierra/SD. Further, it is useful to present the theoretical development for those who
may do maintenance on this part of the code.

Linear Anisotropic Elasticity. Linear elasticity asserts that the stress is a linear function of the strain:

σi j =C4
i jklεkl (4.84)

Where C4
i jkl are the Cartesian components of the fourth order constitutive tensor and the Einstein convention

of summation on repeated indices is used.

4.6.1 Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutive assumption that the stress
is symmetric. This permits the representation of the 3x3 stress matrix and the 3x3 strain matrix each by a

25each element is on exactly one subdomain.
26 This is a transcription of Dan Segalman’s framemaker document, “aniosConst.frm”.
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column vector having six rows.

s =



σ11
σ22
σ33
σ23
σ13
σ12


(4.85)

and,

e =



ε11
ε22
ε33

2ε23
2ε13
2ε12


.

This is the Voigt notation. Note that this mapping from σ to s and from ε to e is not universal. This is the
numbering used in Malvern and seems to be popular in the materials science world, but it differs from the
numbering used in NASTRAN and from the numbering in ABAQUS. Further, note that though the above
are usually referred to as “stress vectors” and “strain vectors”, they are not vectors in the sense that they map
from one coordinate system to another as true vectors do. How that mapping is done is discussed in a later
section.

We use the above to map the fourth-order tensor C4
i jkl into a 6x6 matrix of material parameters. This is

done with the aid of the matrices that formally map σ to s and from ε to e.

en = Eni jεi j (4.86)

and
εi j = enFni j (4.87)

where

E1 =

 1 0 0
0 0 0
0 0 0

 E2 =

 0 0 0
0 1 0
0 0 0

 E3 =

 0 0 0
0 0 0
0 0 1


E4 =

 0 0 0
0 0 1
0 1 0

 E5 =

 0 0 1
0 0 0
1 0 0

 E6 =

 0 1 0
0 0 0
0 1 0

 (4.88)

and

F1 =

 1 0 0
0 0 0
0 0 0

 F2 =

 0 0 0
0 1 0
0 0 0

 F3 =

 0 0 0
0 0 0
0 0 1


F4 =

 0 0 0
0 0 1/2
0 1/2 0

 F5 =

 0 0 1/2
0 0 0

1/2 0 0

 F6 =

 0 1/2 0
0 0 0
0 1/2 0

 (4.89)
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We note that the stress mappings are also achieved with the above third order quantities:

sn = Fni jσi j (4.90)

and
σi j = snEni j (4.91)

From Equations 4.86 and 4.87 or Equations 4.90 and 4.91 we see that,

Emi jFni j = δmn (4.92)

Substituting Equations 4.87 and 4.91 into Equation 4.84 and simplifying with Equation 4.92, we find

sm =Cmnen (4.93)

where
Cmn = Fmi jC4

i jklFnkl (4.94)

Though above shows how to find the 6x6 matrix Ci j in terms of the fourth order tensor components C4
i jkl , the

material description is usually provided directly in terms of the components of Ci j.

4.6.2 Strain Energy and Orientation

We now address the situation where the matrix of material parameters of are provide in a Cartesian coordi-
nate system different from the coordinate system (usually the global system) in which strains are calculated.
Because stress and strain are tensors, they transfer from one coordinate system to another by:

σi j = Raiσ̂abRb j (4.95)

and
εi j = Raiε̂abRb j (4.96)

where σi j and εi j are the stress and strain components calculated in some other (global) Cartesian system
and Rai are the components of the rotation matrix that rotates the basis vectors in that global system to that
with respect to which the material properties are defined. A basis vector b̂a in the local, material frame is
expressed in terms of the basis vectors of the global system by:

b̂a = Raibi (4.97)

where b1, b2, and b3 are the basis vectors of the global frame.

From Equations 4.90, 4.91, and 4.94, we find following

sm = (Fmi jEnabRaiRb j)ŝn. (4.98)

From Equations 4.86, 4.87, and 4.96, we find the more useful relationship

em = (Emi jFnabRaiRb j)ên. (4.99)
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The above two transformations are simplified:

s = T T ŝ (4.100)

and
e = T ê (4.101)

where the 6x6 transformation matrix, T , is defined

Tnk = Eni jFkabRaiRb j = tr
(
ET

n RFkRT ) (4.102)

Noting that
s = Ĉê, (4.103)

and substituting Equations 4.100 and 4.101 into Equation 4.103, we further find

s = T TĈTe. (4.104)

Comparing the above with Equation 4.93, we finally find that

C = T TĈT (4.105)

which was the main point of this exercise.

Note also that the components of arrays En and Fn are mostly zero, with the rest either 1 or 1/2. After
using Maple to simplify the product matrix,we find that T has a fairly simple form.

T =

[
T11 T12
T21 T 22

]
(4.106)

where

T11 =

 R2
11 R2

12 R2
13

R2
21 R2

22 R2
23

R2
31 R2

32 R2
33

 , (4.107)

T12 =

 R13R12 R13R11 R13R11
R23R22 R23R21 R23R21
R33R32 R33R31 R33R31

 , (4.108)

T21 =

 2R21R31 R22R32 R23R33
2R11R31 R12R32 R13R33
2R11R21 R12R22 R13R23

 , (4.109)

and

T22 =

 R23R32 +R22R33 R23R31 +R21R33 R22R31 +R21R32
R13R32 +R12R33 R13R31 +R11R33 R12R31 +R11R32
R13R22 +R12R23 R13R21 +R11R23 R12R21 +R11R22

 . (4.110)

Note that T defined above is the transformation matrix N in of Equation 3.34 in Auld’s “Acoustic Waves
in Solids, Volume I” (reference 122), which is used in the same way.

The Maple code to perform the above calculations follows.
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with(linalg);
E[1] := matrix(3,3,[ [1,0,0],[0,0,0],[0,0,0]]);
E[2] := matrix(3,3,[ [0,0,0],[0,1,0],[0,0,0]]);
E[3] := matrix(3,3,[ [0,0,0],[0,0,0],[0,0,1]]);
E[4] := matrix(3,3,[ [0,0,0],[0,0,1],[0,1,0]]);
E[5] := matrix(3,3,[ [0,0,1],[0,0,0],[1,0,0]]);
E[6] := matrix(3,3,[ [0,1,0],[1,0,0],[0,0,0]]);
F[1] := E[1];
F[2] := E[2];
F[3] := E[3];
F[4] := (1/2)*E[4];
F[5] := (1/2)*E[5];
F[6] := (1/2)*E[6];
R := matrix(3,3);

for k from 1 to 6 do
FRR[k] := matrix(3,3);
FRR[k] := evalm ( R &* F[k] &*transpose(R));
od;

T := matrix(6,6);
for k from 1 to 6 do
for n from 1 to 6 do
T[n,k] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
T[n,k] := T[n,k] +evalm(FRR[k][i,j])*E[n][i,j];
od; od;
od; od;

readlib(C);
C(T);

read("/home/djsegal/Maple/tools/maple2mif.mpl");
M := maple2mif();
fprintf("/home/djsegal/MPP/notes/temp.mif",’%s’,M(eval(T))) ;

4.7 Traction Loads

In the traction loading of a side set, if the user specified coordinate frame Cu with basis

(ê1, ê2, ê3)

is specified with the traction vector, it is used to determine the directions of application of the loads so that
the third component remains the element normal vector, n̂.

Loads are applied in the projected coordinate frame Cp with basis

(p̂1, p̂2, n̂)
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determined using the normal,
p̂1 = ê2× n̂ ρ1, p̂2 = n̂× p̂1 ρ2.

Here ρi are just positive scalar normalization terms. The event ê2× n̂ = 0 is handled by substituting p̂1 =
ê1× n̂ρ1 and p̂2 = n̂× p̂1 ρ2.

The direction in which forces will be applied depends on the coordinate systems. In particular side sets
will need to be chosen (or subdivided) to ensure that ê2× n̂ 6= 0.

In a cartesian coordinate frame, element normal vectors for tractions should not be be aligned with the y
direction of the applicable coordinate frame. In the cylindrical frame (r,θ,z) or a spherical coordinate frame
(r,θ,φ), element normal vectors aligned with the azimuthal direction are problematic.

n̂

n

p

e

e

e
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Figure 21. Coordinate Frame Projection for Tractions
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5 Linear Algebra Issues

5.1 Solution Spaces

There are a number of different dimensions in Sierra/SD. These will be summarized here with a focus on
using the data within the matlab framework. Examples of how to convert data from one dimensionality to
another will be given.

The subject of matrix dimensions is an important one. Sierra/SD has a fairly simple set of dimensions
compared to more complex systems like Nastran. However, it is critical that these be well understood if we
wish to manipulate the data.

As an example, I consider an eigen analysis of a structure with 9938 nodes. This structure is made of
shells and solids. There are no boundary conditions, but there are 9 mpcs applied. I look at only the serial
file sizes.

To get the required maps and other m-files, we must select ’mfiles’ in the output section. To get the
eigenvector data, we must also write the exodus file with ’disp’ selected in the output section.

For this model, we have the following important dimensions.

1. #nodes=9938

2. external set= #nodes * 8 dofs/node = 79504

3. G-set = # active dofs before boundary conditions = 42708

4. A-set = analysis set = # equations to be solved = 42699

5. reduced external set = #nodes * 3 = 29814

There are 3 dofs/node for solid elements, but shells and beams have 6. Acoustic and generalized dofs also
add to the G-set. In aggregate, the total dofs is 42708 before boundary conditions and mpcs are applied.
There are no BCs in the model, but there are 9 MPC equations, each of which eliminates 1 dof, so the Aset
is reduced to 42699.

Unfortunately, the eigen disp*.m files are written in the reduced external set since this is what the
analysts typically want. The bad news is that these m-files are useless to us. The good news is that all the
data is available in either m-files or in the exodus output.

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set. They are symmetric
matrices and only one half of the off diagonal is stored. To get the complete matrix within matlab,

>>> K = Kssr + Kssr’ - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the external set) are available in the output exodus file. To get them use the seacas
command exo2mat.
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> exo2mat example-out.exo

Within matlab, the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;
>>> phi(tmp+1,:)=nvar01;
>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
>>> phi(tmp+4,:)=nvar04;
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector. However, phi is dimen-
sioned at 59628 x 10 for this example. We clearly can’t multiply phi by K for example - the dimensions
don’t match. To do this we need a map.

We have two maps in our directory. FetiMap a.m is the map from the external set to the A set. Thus we
can reduce phi to the A-set by combining it with Fetimap a. Generally the G-set map is not output, but
is used internally.

>>> p2=zeros(max(max(FetiMap_a)),nsteps);
>>> for j=1:nnodes*8
>>> i=FetiMap_a(j);
>>> if ( i > 0 )
>>> p2(i,:)=phi(j,:);
>>> end
>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=FetiMap_a+1;
>>> tmp=zeros(max(max(mapp1)),nsteps);
>>> tmp(mapp1,:)=phi;
>>> p2=tmp(2:max(max(mapp1)),:);

Now we can do all the neat things like p2’*K*p2.

To get back to the external set, we again use this map. For example, if we have a vector of dimension
42699,

>>> x=1:42699’;
>>> XX = zeros(59628,1);
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>>> for i=1:59628
>>> if ( FetiMap_a(i)>0 )
>>> XX(i)=x(FetiMap_a(i));
>>> end
>>> end

Obviously, similar shortcuts can be made to make this more efficient. One that appears to work is shown
here.

>>> xtmp=[ 0 x’];
>>> X2=xtmp(mapp1);

5.2 Matrix Dimensions: Revision

The previous section is pretty confusing, and worse than this, it does not correspond well with other docu-
mentation. Let us make another stab at it. The various spaces are listed in Table 7. A discussion of each
follows.

Space Description
Full-set biggest possible set. 8 * number of nodes

Structural-set 6 * number of nodes
This is the space that is typically written to exodus.

Assembly-set
This is the space to which we assemble matrices. It represents
those DOFS that have been “touched” by elements.

S-set degrees of freedom eliminated by SPC
Common-set Assemby minus S-set

M-set degrees of freedom eliminated by MPC
Analysis-set dimension of matrices sent to solvers.

Table 7. Sierra/SD solution spaces

Full-set This space is referenced by many of our solvers. We then provide a map from this space to the
Analysis-set using Feti-map. Every node has 8 degrees of freedom (3 translations, 3 rotations, acoustic
and generalized). Virtual nodes may have been added to handle generalized dofs.

Structural-set This is identical to the full-set except that acoustic and generalized dofs have been elimi-
nated. It is used for output to exodus files, and contains all the structural dofs of the model. It includes
virtual nodes.

Assembly-set The assembly set is the space to which matrices are assembled. It includes dofs that may
later be eliminated by SPC or MPC. It includes all dofs that are touched.

Assembly-set = Analysis-set∪S-set∪M-set

Currently the only map to the assembly set is found in the NodeArray.
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S-set This is the list of degrees of freedom that are eliminated by single point constraints (SPC).

Common-set The “Common” set includes the Assembly set, with the S-set removed. This set is common to
all solvers, in contrast to the analysis set which may have different dimensions for serial and parallel
solvers.

M-set This is the list of degrees of freedom that are eliminated using multipoint constraints (or MPCs).
When using constraint elimination in serial, the dimension of the problem is reduced by the number
of MPC constraints. In contrast, in solvers that use Lagrange multipliers, the stiffness matrix is
unchanged by introduction of the constraints. Note however, that the solution vector will include
extra Lagrange multipliers.

Analysis-set The analysis set is the matrix dimension that will be sent to the solver. Note that it may
depend on the solver. With constraint elimination, the M-set may not be empty, while solvers that use
Lagrange multipliers will always have an empty M-set.

Solution-set As noted above, in parallel solutions with Lagrange multipliers, we actually pass a LHS matrix
of dimension equal to the Analysis set. However, the solution vector returned is of length Analysis-set
plus the number of Lagrange multipliers. This is the solution-set length.

G-set Unfortunately, while the sets above are well defined, the G-set is not. At various times it has been used
to refer to the Full, Structural or assembly set. This confusion spreads throughout the documentation
and the comments in the notes.

5.2.1 Revised Set definition Example

Consider the problem in Figure 22. The model consists of 4 real nodes, one MPC, one superelement (with
one generalized dof), and single point constraints sufficient to clamp the left hand side, and keep the rest of
the model in one dimension.

1 2 3

MPC SE (1 generalized dof)

4

Figure 22. Example for Set Definition

Full-set There are 4 real nodes, plus 1 virtual node (generated for the generalized dof). Thus,

size(Full) = (4+1)8 = 40
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Assembly-set The two elements are beams, with 6 dofs per node. The superelement touches the generalized
dof on the virtual node.

size(Assembly) = (4)6+1 = 25

S-set Degrees of freedom are eliminated by clamping 6 dofs on node 1, and by eliminating 5 dofs each on
the 3 remaining nodes.

size(S) = 6+15 = 21

Common-set After elimination of the S-set, the common set is,

size(Common) = 25−21 = 4

All solvers use this space initially. The following cases are different for each solver.

M-set The size of the M-set is one, but what that means to the analysis depends on the solver. For serial
solvers with constraint elimination, the matrix size is reduced by one. For Lagrange multiplier solvers,
we keep our matrices at the same size, but augment the solution space by one Lagrange multiplier.

Analysis-set For serial, constraint elimination solvers, the analysis set is 3. For Lagrange multiplier prob-
lems, the LHS matrix stays at the Common-set dimension, but constraint equations are passed in
separately, and Lagrange multipliers are part of the solution vector.

Solution-set For serial solvers, the Solution-set is always equal to the analysis-set (which is 3 in this exam-
ple). For Lagrange multiplier solvers, the solution-set in this example is 5.

5.3 Rotational Degrees of Freedom

In addition to the three translational degrees of freedom common in solid elements, beams, shells and some
other specialty elements use rotational degrees of freedom. These degrees of freedom permit direct applica-
tion of moments and allow efficient computations of structural element response such as bending. Rotational
degrees of freedom are also important for management of rigid bodies. There are two methods of managing
rotational degrees of freedom in our applications. Full rotation tensors are used for large deformation non-
linear response, while infinitesimal rotation angles are typically used for small strain, linear response such
as eigen analysis.

5.3.1 Euler Angles

In standard texts on classical mechanics, the rotation of a rigid body is often described using a rotation tensor
complete with Euler angles. However, there are a variety of definitions of these angles, and the order by
which they are applied does matter. From the wikipedia:
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Euler angles are a means of representing the spatial orientation of any frame of
the space as a composition of rotations from a reference frame. In the following
the fixed system is denoted in lower case (x,y,z) and the rotated system is denoted
in upper case letters (X,Y,Z).
The definition is Static. The intersection of the xy and the XY coordinate planes
is called the line of nodes (N).

α is the angle between the x-axis and the line of nodes.

β is the angle between the z-axis and the Z-axis.

γ is the angle between the line of nodes and the X-axis.

This previous definition is called z-x-z convention and is one of several common
conventions; others are x-y-z and z-y-x. Unfortunately the order in which the
angles are given and even the axes about which they are applied has never been
“agreed” upon. When using Euler angles the order and the axes about which the
rotations are applied should be supplied.
Euler angles are one of several ways of specifying the relative orientation of two
such coordinate systems. Moreover, different authors may use different sets of
angles to describe these orientations, or different names for the same angles.
Therefore a discussion employing Euler angles should always be preceded by
their definition.

Whatever definition is used, Euler angles use a series of 3 rotations about 3 different axis to represent
the orientation of a body in space. For example, in the case of the z-x-z convention, these angle define the
following rotation matrix.

[R] =

cosα −sinα 0
sinα cosα 0

0 0 1

1 0 0
0 cosβ −sinβ

0 sinβ cosβ

cosγ −sinγ 0
sinγ cosγ 0

0 0 1


Because matrix multiplication is not commutative, the solution depends on the order of rotation. Rota-

tion of a vector by this angle is a tensor product with this matrix. i.e. v′ = Rv.

5.3.2 Infinitesimal Rotational Angles

Most linear, small deformation FE applications apply the small angle approximation. We expand all trigono-
metric functions as polynomials of their arguments and retain only first order terms in the angles. Thus,
sin(θ) = θ, and cross terms are eliminated. With these approximations, the order of rotation becomes unim-
portant, and the component contributions to the rotation matrix are commutable. For a rotation about x,y, z
of α,β,γ we have:

[R] =

 1 −γ β

γ 1 −α

−β α 1


This formulation is extremely convenient, because the coordinates are completely independent of each

other. There are obvious limitations, as the approach does not conserve length for larger rotations. This is
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often apparent in animation of mode shapes; the modes are computed under a small angle approximation,
but are often displayed with a finite deformation.

5.3.3 Quaternions

The Euler angles of the previous sections can properly define the rotations of a body. However, the three
ordered matrix operations required are not very convenient from a computational point of view. The quater-
nion provides an alternate form of algebra which is equivalent to the full Euler rotations, and is much more
elegant (and efficient) for this type of computation. Within Sierra/SD, we use the full rotation tensor, while
other sierra solid mechanics codes use quaternions. They are mathematically equivalent.

5.3.4 Sierra/SD Implementations

Linear vs. Nonlinear Solutions

Very simply put, all linear solutions use the infinitesimal rotation angle formulations. All nonlinear solutions
maintain a large rotation capability and use the full rotation tensor. Nonlinear solutions using linear elements
(or linearized tangent stiffness matrix terms) require conversion between these forms.

Mixed Variable Solutions

Many linear element have been constructed which are quite adequate for use in some parts of nonlinear
applications. For example, a large ship may be include a linearized model of an engine as part of the model.
As long as the engine is undergoing small deformations, it is reasonable to employ such a linearized model,
even if another part of the ship is subject to large strain and large rotation. In general, Sierra/SD allows
the user to specify that certain material blocks in a model are linear, even in a nonlinear analysis. This
necessitates translation between these alternate (and non-equivalent) forms.

Incremental Angular Update

Update of the rotation tensor following an incremental solution of a small deformation is accomplished as
follows. Let us call the initial rotation tensor, Rinit . We compute a small rotation increment expressed in
terms of its small rotation angles, <α,β,γ> . From the rotation increment, we compute a rotation increment
quaternion as follows.

1. θ =
√

(α2 +β2 + γ2)

2. q1 = cos(θ/2)

3. c = sin(θ/2)/θ

4. q2 = cα

5. q3 = cβ
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6. q4 = cγ

7. The quaternion is normalized.

The quaternion is then converted to a rotation tensor,

R∇ =

 2(q2
1 +q2

2)−1 2(q2q3−q4q1) 2(q2q4 +q3q1)
2(q2q3 +q4q1) 2(q2

1 +q2
3)−1 2(q3q4−q2q1)

2(q2q4 +−q3q1) 2(q3q4 +q2q1) 2(q2
1 +q2

4)−1


The updated rotation tensor is,

Rupdate = R∇Rinit

Thus, the rotation increment is treated as a full angle update.

5.3.5 Consequence for Linear Elements in nonlinear solutions

The consequence of this update is that there may be significant differences between a nonlinear solution
and a linear solution, even when both are applied to a linear element. The approximations applied for
infinitesimal rotations are significant, and are not reciprocal, i.e. information is lost in that approximation.
Nonlinear solutions should permit large rotations with most elements. Linear solutions are valid only in the
range of small deformations.

5.4 Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One that is essential is that the constraints
must be orthogonal to rigid body rotations. By this we mean that the multipoint constraints must not con-
strain the system in a way that eliminates rigid body motion. This can be easily seen in modal analysis. An
ungrounded system with MPCs must retain 6 rigid body modes. Transient and static analysis has the same
kind of issues, but here the problem may not be as obvious. Note that there are a variety of means of arriving
at the weights for a set of constraints. For example, an inconsistent tied constraint may be constructed with
a node on face approach. Alternatively a mortar method can accomplish the same thing with a different set
of constraints. The weights for these systems may differ, but all must allow the body to freely rotate. It is
clear that each constraint equation must satisfy this orthogonality independently.

5.4.1 Beam Example

I take an an example a simple two node beam to which a single node is constrained as is illustrated in Figure
23. The beam is of unit length, in the X direction. Point 3 is located a distance ε from point 1.

The displacement vector is defined as,

U = [u1x u1y u2x u2y u3x u3y] (5.1)
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1 23

ε� -

Figure 23. Node Constrained Directly to Beam.

With a linear shape function, the typical constraints required to keep point 3 on the line are,

[(1− ε) 0 ε 0 −1 0] (5.2)

[0 (1− ε) 0 ε 0 −1] (5.3)

The three orthogonal rigid body vectors are,27

 1 0 1 0 1 0
0 1 0 1 0 1
0 −θ 0 θ 0 (2ε−1)θ

 (5.4)

It can be seen that the constraints are orthogonal to the rigid body vectors.

5.4.2 Offset Example

With an offset, such as that shown in Figure 24, the rigid body vectors change. They become,

 1 0 1 0 1 0
0 1 0 1 0 1
0 −θ 0 θ −Lθ (2ε−1)θ

 (5.5)

What is important here is that the rotation rigid body mode gains an extra term. Rotation of this X axis beam
about the Z axis now has a term in X . These rotational rigid body modes are no longer orthogonal to the
original constraints, 5.3.

L1 2

3

ε� -

Figure 24. Node Constrained Offset to Beam.

27 We are using infinitesimal rotations where sin(θ) = θ.
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5.4.3 Orthogonalization

A simple orthogonalization step can make the constraint weights once again orthogonal. We compute,

n = ~C ·~Ri/||~Ri||2 (5.6)
~C ← ~C−n~Ri (5.7)

where ~C represents the constraint equation, and ~Ri represents one of the orthogonalized rigid body modes.
Without loss of generality, we can restrict ~R to the nodes in the constraint interaction. In general, this
operation must be performed for all rigid body modes on each constraint.

5.5 Interpolation within an Element

It can be useful to sample a field within an element. This is necessary for verification of the input for
temperature fields applied at integration points, as in a X-ray deposition. If the fields are known at a variety
of points inside an element, we can use that information to determine the fields at an arbitrary location. In
the case of infinite elements, the fields “interior” to the element actually project to the entire space beyond
the element surface. Several means may be used to perform this interpolation. In Sierra/SD we use a least
squares projection onto a Pascal space, and then apply the Pascal shape functions to generate the interpolated
function. The least squares solution requires that there be more sample points than there are shape functions.

As an example, consider temperatures applied at the Gauss integration points of a Hex20. The coordi-
nates of the 27 integration points are defined in Table 3. For a quadratic fit of the data, we can complete the
Pascal triangle to obtain the shape functions listed in Table 8. We generate a shape matrix, A, for which each
entry in the matrix is given as follows.

Ai j = Pj(ξi)

Here, ξi is the element coordinate of the ith integration point.

index Function, Pi

1 1
2 η1
3 η2
4 η3
5 η2

1
6 η1η2
7 η1η3
8 η2

2
9 η2η3
10 η2

3

Table 8. Pascal Shape functions for 3D elements of order 2

The coefficients of the Pascal shape functions, b, are given by the solution to the least squares minimiza-
tion problem.

minimize||x−Ab||
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where x is the vector of known temperature values at the 27 integration points in the element, A is the shape
matrix defined above and b the vector of coefficients to determine. This problem is solved using the LAPACK
function dgels in Sierra/SD.

Once the coefficient vector is known, the solution at any location within the element may be determined
by expansion of the shape functions at the location of interest.

T (η1,η2,η3) = ∑
i

biPi(η1,η2,η3)

where Pi are the shape functions of Table 8.

5.6 Mass Properties

Mass properties are computed using the method of Baruch and Zemel.123 The total mass, location of the
center-of-gravity, and the moment of inertia tensor are all calculated for most element types using the mass
matrix and a set of rigid-body vectors. However, acoustic elements and superelements use a slightly different
procedure. Both methods are discussed below.

5.6.1 Mass Property Calculations for Most Element Types

The mass properties are computed using rigid-body vectors. At a node, the translational rigid-body vectors
are

{Rx}=



1
0
0
0
0
0


{Ry}=



0
1
0
0
0
0


{Rz}=



0
0
1
0
0
0


(5.8)

and the rotational rigid-body vectors are

{Rrx}=



0
−z
y
1
0
0


{Rry}=



z
0
−x
0
1
0


{Rrz}=



−y
x
0
0
0
1


(5.9)

where x, y, and z are the location of the node in the global coordinate system. These vectors are actually
assembled on an element level. As an example, for a three-node triangle element, {Rrx} takes the form

{Rrx}T ={
0 −z1 y1 1 0 0 0 −z2 y2 1 0 0 0 −z3 y3 1 0 0

}
.

(5.10)

The total mass for an element can be computed as

Melement = {Rx}T [Me]{Rx} (5.11)

= {Ry}T [Me]{Ry} (5.12)

= {Rz}T [Me]{Rz} (5.13)
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where [Me] is the mass matrix for the element. The total mass for the model is computed by summing over
all the elements

Mtotal =
Nel

∑
i=1
{Rx}T [Me]{Rx}. (5.14)

Note that the x, y, and z-direction equations produce the same result. Sierra/SD uses the x-direction equa-
tion.

In a similar manner, the location of the center-of-gravity can be found by

xcg =
1

Mtotal

Nel

∑
i=1
{Rrz}T [Me]{Ry}, (5.15)

ycg =
1

Mtotal

Nel

∑
i=1
{Rrx}T [Me]{Rz}, (5.16)

zcg =
1

Mtotal

Nel

∑
i=1
{Rry}T [Me]{Rx}. (5.17)

The components of the inertia tensor are computed as

Ixx =
Nel

∑
i=1
{Rrx}T [Me]{Rrx}, (5.18)

Iyy =
Nel

∑
i=1
{Rry}T [Me]{Rry}, (5.19)

Izz =
Nel

∑
i=1
{Rrz}T [Me]{Rrz}, (5.20)

Ixy =
Nel

∑
i=1
{Rrx}T [Me]{Rry}, (5.21)

Ixz =
Nel

∑
i=1
{Rrx}T [Me]{Rrz}, (5.22)

Iyz =
Nel

∑
i=1
{Rry}T [Me]{Rrz}. (5.23)

This procedure for computing mass properties applies to hex8, hex20, wedge6, wedge15, tet4, tet10,
beam2, Obeam, Nbeam, truss, tri3, tri6, tria, quad4, quad8, quadM, and conmass elements.

5.6.2 Mass Property Calculations for Acoustic Elements and Superelements

Although acoustic element blocks are made up of element types listed above, acoustic elements only have 1
degree-of-freedom per node. Thus, the rigid-body vectors presented above cannot be used without modifi-
cation. Similarly, superelement can have any number of degrees-of-freedom depending on how the element
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was formed. Because of this, a different method is used to compute mass properties for superelements and
acoustic elements.

The mass properties for these elements can be computed with somewhat less accuracy than the method
presented above by lumping the mass matrix of each element, then summing the contribution from each
node. This is the method implemented in Sierra/SD .

The total mass is

Mtotal =
Nnode

∑
i=1

Mi (5.24)

where Mi is the mass at node i. The center-of-gravity is

xcg =
1

Mtotal

Nnode

∑
i=1

Mixi, (5.25)

ycg =
1

Mtotal

Nnode

∑
i=1

Miyi, (5.26)

zcg =
1

Mtotal

Nnode

∑
i=1

Mizi (5.27)

where xi, yi, and zi, are the global coordinates of node i. The components of the inertia tensor are

Ixx =
Nnode

∑
i=1

Mi(y2
i + z2

i ), (5.28)

Iyy =
Nnode

∑
i=1

Mi(x2
i + z2

i ), (5.29)

Izz =
Nnode

∑
i=1

Mi(x2
i + y2

i ), (5.30)

Ixy =−
Nnode

∑
i=1

Mixiyi, (5.31)

Ixz =−
Nnode

∑
i=1

Mixizi, (5.32)

Iyz =−
Nnode

∑
i=1

Miyizi. (5.33)
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6 Constraints and Contact

A GDSW contact enforcement method is summarized. Maintaining constraints, i.e. given any ũ, finding
“near by” u = T ũ satisfying the constraints, is discussed at the end. Contact introduces a residual force to
the momentum equation,

Ku+CT
λ = f (6.1)

and the constraint
Cu = 0, C is r×n, r� n (6.2)

A null space basis Z of rank ≤ n− r satisfies CZ = 0. The full rank case, rank(Z) = n− r, is addressed here
(with the complicated software handling the general case, and including many important optimizations).
Displacements are of the form u = Zv, and the momentum equation, (6.1), reduces to (ZT KZ)v = ZT f .

Direct elimination is a null space basis method in which permutation matrices Q and P are found such
that

0 = QCPuP =CSuP = [CSD,CSI]

[
uDP

uIP

]
, u = PuP

Here D and I denote the dependent and independent sets. The full rank case has CSD nonsingular for |S| =
|D|= r. A clever notation is CDSCSD = I and CDSCSI =CDI . Independent displacements uIP are independent
of the constraints. Meanwhile uDP depends on uIP through the constraints,

uDP +CDI uIP = 0, Z =

[
−CDI

I

]
.

In practice an LU decomposition

CT = P
[

LD

LI

]
UQ

leads to
LT

D uDP +LT
I uIP = 0, CDI = L−T

D LT
I .

The transformation T = PZPT
I resets the dependent constraints, leaving the independent constraints invari-

ant. Here P = [PD,PI] so that in particular ũIP = PT
I ũ.

6.1 Tied Friction

The work on tied surfaces with friction is under development. Details are maintained in our design docu-
mentation.

6.2 Mortar Methods

6.2.1 Background

For simplicity, we only consider one of the three components of displacement in the following development;
the same approach holds for the other two components of displacement. Let um and us denote displacements
on the master and slave sides of a mesh interface. Ideally, we would like to satisfy

us = um
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at all locations on the interface. This restriction, however, is only practical for meshes which are conforming
at the interface. Otherwise, displacements would be restricted to a low-order polynomial of degree equal to
that of the lowest-order finite element on either side of the interface. As a result, the interface would be too
stiff.

For mortar methods, the constraint us = um is only satisfied in a weak sense. Specifically, the mortar
constraints are of the form ∫

Γ

λ(us−um)dx = 0, (6.3)

where Γ denotes the interface and λ is a Lagrange multiplier. Notice the familiar inconsistent tied contact
(node on face) constraints for a slave node can be expressed in this form by choosing λ as a Dirac delta
function for the subject slave node. For mortar methods it is important that constant functions are in the
space of Lagrange multipliers. Clearly, Dirac delta functions cannot be combined to obtain a constant. Thus,
we should not expect the convergence rates of mortar and tied contact methods to be identical. Indeed, the
convergence rates for tied contact are in general suboptimal.124

Let qm and qs denote vectors of nodal values of displacement on the master and slave sides of the
interface. Similarly, let qλ denote a vector of discrete values of the Lagrange multiplier. The displacements
and Lagrange multiplier are approximated (discretized) as follows:

um = φ
T
mqm, (6.4)

us = φ
T
s qs, (6.5)

λ = φ
T
λ

qλ, (6.6)

where φm and φs are vectors of shape functions for the master and slave sides of the interface, and φλ is a
vector of shape functions for the Lagrange multiplier. A discrete form of the mortar constraints are obtained
from substitution of (6.4-6.6) into (6.3).

Mssqs +Msmqm = 0, (6.7)

where
Mss =

∫
Γ

λsφ
T
s dx, Msm =

∫
Γ

λsφ
T
m dx. (6.8)

The standard mortar method implemented in ACME uses

φλ = φs. (6.9)

In other words, the Lagrange multiplier shape functions are the same as the shape functions for the slave
side of the interface. We note in the mortar methods literature that Lagrange multiplier shape functions
are often modified for slave nodes on the boundary of the interface. The purpose for this modification is
to avoid redundant constraints at the intersection of two or more interfaces. At present, we make no such
modifications, but we will revisit this topic in a later section. Substitution of (6.9) into (6.8) gives

Mstandard
ss =

∫
Γ

φsφ
T
s dx, Mstandard

sm =
∫

Γ

φsφ
T
m dx. (6.10)

Although the matrix Mstandard
ss is sparse and positive definite, its inverse is dense. Thus, if one were to

solve (6.7) for qs in terms of qm, each slave node displacement would depend on all the master side nodal
displacements in the general case. As a result, solvers which make use of this form of constraint elimination
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would suffer from significant memory and computational demands for interfaces with large numbers of
nodes.

The basic idea with dual mortar methods is to choose a Lagrange multiplier basis which leads to a
diagonal Mss matrix. One could then efficiently eliminate slave node displacements since each one would
only depend on the master node displacements in a small neighborhood around the slave node rather than
the entire interface. In this respect, the constraint equations for dual mortar methods resemble those of tied
contact.

Let σ denote an element face on the slave side of the interface. Further, let σ(Γ) denote the set of all
such faces on Γ. From (6.8) we then have

Mss = ∑
σ∈σ(Γ)

Mssσ, Msm = ∑
σ∈σ(Γ)

Msmσ, (6.11)

where
Mssσ =

∫
σ

φλφ
T
s dx, Msmσ =

∫
σ

φλφ
T
m dx. (6.12)

For the dual mortar method, we choose the vector φλ to be a linear combination of rows of φs. Specifically,
for each slave face σ we set

φλ = Aσφs, (6.13)

where Aσ is a transformation matrix. In order to have a method which passes constant stress patch tests
(linear consistency), it must be possible to obtain a constant function from a linear combination of the rows
of φλ. We see that Aσ equal to the identity matrix satisfies this condition since the sum of all slave shape
functions over σ is unity. In this case, however, we recover the standard mortar method. The present goal is
to choose Aσ to satisfy the constant approximation property while also leading to a diagonal matrix Mss. To
this end, we follow the construction in55 and:48

Aσ = Dσ(Mstandard
ssσ )−1, (6.14)

where

Dσ = diag
(∫

σ

φs dx
)
. (6.15)

Replacing φs in (6.10) by Aσφs, we obtain

Mdual
ss = ∑

σ∈σ(Γ)

∫
σ

Aσφsφ
T
s dx = ∑

σ∈σ(Γ)

AσMstandard
ssσ = ∑

σ∈σ(Γ)

Dσ, (6.16)

Mdual
sm = ∑

σ∈σ(Γ)

∫
σ

Aσφsφ
T
m dx = ∑

σ∈σ(Γ)

AσMstandard
smσ . (6.17)

Since each Dσ is diagonal, it follows that Mdual
ss is also diagonal.

Numerical integration over each slave face σ is done in ACME by first decomposing σ into a set of
triangular facets t(σ) and then summing the contributions from each of these facets. Specifically, from
ACME we have access to the integrals

Mstandard
sst =

∫
t
φsφ

T
s dx, Mstandard

smt =
∫

t
φsφ

T
m dx, (6.18)

where t ∈ t(σ). By assembling contributions to σ, we then calculate

Mstandard
ssσ =

∫
σ

φsφ
T
s dx = ∑

t∈t(σ)
Mstandard

sst . (6.19)
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With Mstandard
ssσ now in hand, we then calculate

Mdual
sst = AσMstandard

sst = Dσ(Mstandard
ssσ )−1Mstandard

sst , (6.20)

Mdual
smt = AσMstandard

sst = Dσ(Mstandard
ssσ )−1Mstandard

smt . (6.21)

Since Mstandard
ssσ is symmetric and positive definite, it can be factored using the Cholesky decomposition.

Accordingly, products with the inverse of Mstandard
ssσ in (6.20) and (6.21) can be obtained with calls to LAPACK

routines DPOTRF and DPOTRS. It then only remains to calculate the entries of the diagonal matrix Dσ.

Let e denote a vector of the same length as φs and with all its entries equal to 1. Since the sum of shape
functions in φs equals 1 in σ, we have

φ
T
s e = 1. (6.22)

From (6.19) we then obtain

Mstandard
ssσ e =

∫
σ

φs(φ
T
s e)dx =

∫
σ

φs dx. (6.23)

With reference to (6.15), it then follows that

Dσ = diag
(

Mstandard
ssσ e

)
. (6.24)

The procedure used to calculate the transformed mortar matrices Mdual
sst and Mdual

smt for the dual Lagrange
multiplier basis is summarized as follows.

1. Calculate Mstandard
ssσ by assembling contributions from triangular facets as in (6.19).

2. Calculate the diagonal matrix Dσ according to (6.24).

3. Calculate the mortar matrices Mdual
sst and Mdual

smt for the dual Lagrange multiplier basis according to
(6.20) and (6.21).

In summary, all that is needed is to replace the mortar matrices Mstandard
sst and Mstandard

smt for each triangular
facet t by their dual basis counterparts Mdual

sst and Mdual
smt . The remainder of the coding in ACME remains the

same. The only code changes on the Sierra/SD side is to pass a flag to ACME indicating whether or not to
use the dual mortar method.

6.2.2 Treatment of Interface Boundary

To be continued. This section will deal with the special treatment of slave nodes on the interface boundary
to avoid potential redundant constraint equations.

6.2.3 Nodal Coordinate Adjustments

To be continued. This section will deal with how to initially move the slave nodes to retain all six rigid body
modes for curved interfaces or flat interfaces with initial gaps.
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